Improved soil carbon stock spatial prediction in a Mediterranean soil erosion site through robust machine learning techniques

被引:4
|
作者
Mosaid, Hassan [1 ]
Barakat, Ahmed [1 ]
John, Kingsley [2 ]
Faouzi, Elhousna [3 ]
Bustillo, Vincent [4 ,5 ]
El Garnaoui, Mohamed [3 ]
Heung, Brandon [2 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech, Geomat Georesources & Environm Lab, Beni Mellal, Morocco
[2] Dalhousie Univ, Fac Agr, Dept Plant Food & Environm Sci, Truro, NS B2N 5E3, Canada
[3] Sultan Moulay Slimane Univ, Fac Sci & Tech, Data4Earth Lab, Beni Mellal, Morocco
[4] Univ Toulouse, CESBIO, CNES, INRAE,IRD,UPS,CNRS, Toulouse, France
[5] IUT Paul Sabatier, Auch, France
关键词
Carbon sequestration; Digital soil mapping; Predictive modeling; Soil erosion; Srou River; REMOTE-SENSING DATA; ORGANIC-CARBON; FEATURE-SELECTION; HEAVY-METAL; LAND; SUSCEPTIBILITY; SUITABILITY; DEPOSITION; MODELS; MATTER;
D O I
10.1007/s10661-024-12294-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil serves as a reservoir for organic carbon stock, which indicates soil quality and fertility within the terrestrial ecosystem. Therefore, it is crucial to comprehend the spatial distribution of soil organic carbon stock (SOCS) and the factors influencing it to achieve sustainable practices and ensure soil health. Thus, the present study aimed to apply four machine learning (ML) models, namely, random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), and Cubist model tree (Cubist), to improve the prediction of SOCS in the Srou catchment located in the Upper Oum Er-Rbia watershed, Morocco. From an inventory of 120 sample points, 80% were used for training the model, with the remaining 20% set aside for model testing. Boruta's algorithm and the multicollinearity test identified only nine (9) factors as the controlling factors selected as input data for predicting SOCS. As a result, spatial distribution maps for SOCS were generated for all models, then compared, and further validated using statistical metrics. Among the models tested, the RF model exhibited the best performance (R2 = 0.76, RMSE = 0.52 Mg C/ha, NRMSE = 0.13, and MAE = 0.34 Mg C/ha), followed closely by the SVM model (R2 = 0.68, RMSE = 0.59 Mg C/ha, NRMSE = 0.15, and MAE = 0.34 Mg C/ha) and Cubist model (R2 = 0.64, RMSE = 0.63 Mg C/ha, NRMSE = 0.16, and MAE = 0.43 Mg C/ha), while the kNN model had the lowest performance (R2 = 0.31, RMSE = 0.94 Mg C/ha, NRMSE = 0.24, and MAE = 0.63 Mg C/ha). However, bulk density, pH, electrical conductivity, and calcium carbonate were the most important factors for spatially predicting SOCS in this semi-arid region. Hence, the methodology used in this study, which relies on ML algorithms, holds the potential for modeling and mapping SOCS and soil properties in comparable contexts elsewhere.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)
    Adeniyi, Odunayo David
    Brenning, Alexander
    Maerker, Michael
    GEODERMA, 2024, 448
  • [42] Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches
    Liess, Mareike
    Schmidt, Johannes
    Glaser, Bruno
    PLOS ONE, 2016, 11 (04):
  • [43] Prediction of soil salinity in the Upputeru river estuary catchment, India, using machine learning techniques
    Sireesha Mantena
    Vazeer Mahammood
    Kunjam Nageswara Rao
    Environmental Monitoring and Assessment, 2023, 195
  • [44] Prediction of soil salinity in the Upputeru river estuary catchment, India, using machine learning techniques
    Mantena, Sireesha
    Mahammood, Vazeer
    Rao, Kunjam Nageswara
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (08)
  • [45] Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques
    Ahmad, Mahmood
    Al-Mansob, Ramez A.
    Ramli, Ahmad Bukhari Bin
    Ahmad, Feezan
    Khan, Beenish Jehan
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (01) : 217 - 231
  • [46] Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques
    Mahmood Ahmad
    Ramez A. Al-Mansob
    Ahmad Bukhari Bin Ramli
    Feezan Ahmad
    Beenish Jehan Khan
    Multiscale and Multidisciplinary Modeling, Experiments and Design, 2024, 7 : 217 - 231
  • [47] Prediction of the Soil Water Retention Curve from Basic Geotechnical Parameters by Machine Learning Techniques
    Abdallah, Adel
    INFORMATION TECHNOLOGY IN GEO-ENGINEERING, 2020, : 383 - 392
  • [48] Spatial Prediction of Heavy Metal Soil Contents in Continental Croatia Comparing Machine Learning and Spatial Interpolation Methods
    Radocaj, Dorijan
    Jurisic-Osijek, Mladen
    Zupan-Zagreb, Robert
    Antonic-Osijek, Oleg
    GEODETSKI LIST, 2020, 74 (04) : 357 - 372
  • [49] Spatial prediction of soil micronutrients using machine learning algorithms integrated with multiple digital covariates
    Keshavarzi, Ali
    Kaya, Fuat
    Basayigit, Levent
    Gyasi-Agyei, Yeboah
    Rodrigo-Comino, Jesus
    Caballero-Calvo, Andres
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2023, 127 (01) : 137 - 153
  • [50] Spatial prediction of soil micronutrients using machine learning algorithms integrated with multiple digital covariates
    Ali Keshavarzi
    Fuat Kaya
    Levent Başayiğit
    Yeboah Gyasi-Agyei
    Jesús Rodrigo-Comino
    Andrés Caballero-Calvo
    Nutrient Cycling in Agroecosystems, 2023, 127 : 137 - 153