Lightweight vehicle object detection network for unmanned aerial vehicles aerial images

被引:1
|
作者
Liu, Lu-Chen [1 ]
Jia, Xiang-Yu [2 ]
Han, Dong-Nuo [1 ]
Li, Zhen-Dong [1 ]
Sun, Hong-Mei [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
关键词
vehicle detection; multiscale feature fusion; unmanned aerial vehicles aerial images; lightweight network; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1117/1.JEI.32.1.013014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the limited computing power of unmanned aerial vehicles (UAVs) and the problems of missed detection and wrong detection of small objects, the current object detection algorithm cannot achieve real-time and high-precision detection. To solve these problems, we propose a vehicle detection network Shuffle CarNet for UAVs aerial images, which is composed of a feature extraction network, a feature fusion network, and a three-scale prediction network. First, according to the limited hardware resources of embedded devices, a lightweight feature extraction network Light CarNet is proposed by fusing the attention mechanism. Second, a four-scale feature bidirectional weighted fusion module is designed. According to the characteristics of the object scale, multilevel feature map bidirectional weighted fusion is selected for target classification and bounding box regression on three scales. Finally, Car-non-maximum suppression is used to reduce false detection and missed detection. Experiments show that compared with other algorithms on the VisDrone-2019 dataset, the proposed method improves the mean average precision by 1.14%, achieves a precision of 82.96%, and can meet the needs of real-time vehicle detection. The superiority of this method is proved by many comparative experiments.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A Real-Time Unmanned Aerial Vehicle (UAV) Aerial Image Object Detection Model
    Tan, Li
    Liu, Zikang
    Liu, He
    Li, Dongfang
    Zhang, Chen
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [32] Lightweight CNN model: automated vehicle detection in aerial images
    Momin, Md Abdul
    Junos, Mohamad Haniff
    Khairuddin, Anis Salwa Mohd
    Abu Talip, Mohamad Sofian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1209 - 1217
  • [33] Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial Vehicles
    Kruber, Friedrich
    Morales, Eduardo Sanchez
    Chakraborty, Samarjit
    Botsch, Michael
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 2089 - 2096
  • [34] Lightweight CNN model: automated vehicle detection in aerial images
    Md Abdul Momin
    Mohamad Haniff Junos
    Anis Salwa Mohd Khairuddin
    Mohamad Sofian Abu Talip
    Signal, Image and Video Processing, 2023, 17 : 1209 - 1217
  • [35] An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images
    Shen, Jiaquan
    Zhou, Wangcheng
    Liu, Ningzhong
    Sun, Han
    Li, Deguang
    Zhang, Yongxin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24330 - 24342
  • [36] YOLO series algorithms in object detection of unmanned aerial vehicles: a survey
    Jiao, Li
    Abdullah, Muhammad Irsyad
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2024, 18 (03) : 269 - 298
  • [37] Unmanned aerial vehicles advances in object detection and communication security review
    Laghari, Asif Ali
    Jumani, Awais Khan
    Laghari, Rashid Ali
    Li, Hang
    Karim, Shahid
    Khan, Abudllah Ayub
    Cognitive Robotics, 2024, 4 : 128 - 141
  • [38] Lightweight unmanned aerial vehicles will revolutionize spatial ecology
    Anderson, Karen
    Gaston, Kevin J.
    FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2013, 11 (03) : 138 - 146
  • [39] A Lightweight Prototype of a Magnetometric System for Unmanned Aerial Vehicles
    Pisciotta, Antonino
    Vitale, Giovanni
    Scudero, Salvatore
    Martorana, Raffaele
    Capizzi, Patrizia
    D'Alessandro, Antonino
    SENSORS, 2021, 21 (14)
  • [40] Object Depth Measurement and Filtering from Monocular Images for Unmanned Aerial Vehicles
    Zhang, Chuanqi
    Cao, Yunfeng
    Ding, Meng
    Li, Xu
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2022, 19 (03): : 214 - 223