Lightweight vehicle object detection network for unmanned aerial vehicles aerial images

被引:1
|
作者
Liu, Lu-Chen [1 ]
Jia, Xiang-Yu [2 ]
Han, Dong-Nuo [1 ]
Li, Zhen-Dong [1 ]
Sun, Hong-Mei [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
关键词
vehicle detection; multiscale feature fusion; unmanned aerial vehicles aerial images; lightweight network; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1117/1.JEI.32.1.013014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the limited computing power of unmanned aerial vehicles (UAVs) and the problems of missed detection and wrong detection of small objects, the current object detection algorithm cannot achieve real-time and high-precision detection. To solve these problems, we propose a vehicle detection network Shuffle CarNet for UAVs aerial images, which is composed of a feature extraction network, a feature fusion network, and a three-scale prediction network. First, according to the limited hardware resources of embedded devices, a lightweight feature extraction network Light CarNet is proposed by fusing the attention mechanism. Second, a four-scale feature bidirectional weighted fusion module is designed. According to the characteristics of the object scale, multilevel feature map bidirectional weighted fusion is selected for target classification and bounding box regression on three scales. Finally, Car-non-maximum suppression is used to reduce false detection and missed detection. Experiments show that compared with other algorithms on the VisDrone-2019 dataset, the proposed method improves the mean average precision by 1.14%, achieves a precision of 82.96%, and can meet the needs of real-time vehicle detection. The superiority of this method is proved by many comparative experiments.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and Baseline
    Yu, Hongyang
    Li, Guorong
    Zhang, Weigang
    Huang, Qingming
    Du, Dawei
    Tian, Qi
    Sebe, Nicu
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (05) : 1141 - 1159
  • [22] Shooting condition insensitive unmanned aerial vehicle object detection
    Liu, Jie
    Cui, Jinzong
    Ye, Mao
    Zhu, Xiatian
    Tang, Song
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
  • [23] Car Detection in Images Taken from Unmanned Aerial Vehicles
    Saribas, Hasan
    Cevikalp, Hakan
    Kahvecioglu, Sinem
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [24] Vehicle detection on unmanned aerial vehicle images based on saliency region detection
    Li W.
    Qu F.
    Liu P.
    International Journal of Performability Engineering, 2019, 15 (02): : 688 - 699
  • [25] Unmanned aerial vehicle images in the machine learning for agave detection
    Escobar-Flores, Jonathan Gabriel
    Sandoval, Sarahi
    Gamiz-Romero, Eduardo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (41) : 61662 - 61673
  • [26] Unmanned aerial vehicle images in the machine learning for agave detection
    Jonathan Gabriel Escobar-Flores
    Sarahi Sandoval
    Eduardo Gámiz-Romero
    Environmental Science and Pollution Research, 2022, 29 : 61662 - 61673
  • [27] Unmanned aerial vehicle abstraction layer: An abstraction layer to operate unmanned aerial vehicles
    Real, Fran
    Torres-Gonzalez, Arturo
    Ramon-Soria, Pablo
    Capitan, Jesus
    Ollero, Anibal
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (04)
  • [28] Dim and Small Target Detection in Unmanned Aerial Vehicle Images
    Li, Wushen
    Wu, Guoqiang
    Sun, Haohui
    Bai, Chaochao
    Bao, Wenlong
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3143 - 3152
  • [29] An Object-Based Hierarchical Method for Change Detection Using Unmanned Aerial Vehicle Images
    Qin, Rongjun
    REMOTE SENSING, 2014, 6 (09) : 7911 - 7932
  • [30] Vehicle Detection in Aerial Images Based on Lightweight Deep Convolutional Network and Generative Adversarial Network
    Shen, Jiaquan
    Liu, Ningzhong
    Sun, Han
    Zhou, Huiyu
    IEEE ACCESS, 2019, 7 : 148119 - 148130