Bounds in the Lee metric and optimal codes

被引:4
|
作者
Byrne, Eimear [1 ]
Weger, Violetta [2 ]
机构
[1] Univ Coll Dublin, Dublin 4, Dublin D04V1W8, Ireland
[2] Tech Univ Munich, Theresienstr 90, D-80799 Munich, Germany
基金
瑞士国家科学基金会;
关键词
Ring-linear code; Lee distance; Maximum Lee distance; Bounds; Constant weight codes; FINITE; SPARSENESS; GENERICITY; DISTANCE;
D O I
10.1016/j.ffa.2022.102151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate known Singleton-like bounds in the Lee metric and characterize their extremal codes, which turn out to be very few. We then focus on Plotkin-like bounds in the Lee metric and present a new bound that extends and refines a previously known, and out-performs it in the case of non-free codes. We then compute the density of extremal codes with regard to the new bound. Finally we fill a gap in the characterization of Lee-equidistant codes. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Array Codes in the Generalized Lee-RT Pseudo-Metric (GLRTP-Metric)
    Jain, Sapna
    ALGEBRA COLLOQUIUM, 2010, 17 : 727 - 740
  • [42] Optimal bounds on codes for location in circulant graphs
    Ville Junnila
    Tero Laihonen
    Gabrielle Paris
    Cryptography and Communications, 2019, 11 : 621 - 640
  • [43] Optimal bounds on codes for location in circulant graphs
    Junnila, Ville
    Laihonen, Tero
    Paris, Gabrielle
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 621 - 640
  • [44] Bounds and Constructions on Optimal Constant Composition Codes
    Wang, Chengmin
    Yan, Jie
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 178 - 180
  • [45] Lee-metric decoding of BCH and Reed-Solomon codes
    Wu, XW
    Kuijper, M
    Udaya, P
    ELECTRONICS LETTERS, 2003, 39 (21) : 1522 - 1524
  • [46] Improved decoding of algebraic-geometric codes with respect to the Lee metric
    Wu, Xin-Wen
    Kuijper, Margreta
    Udaya, Parampalli
    6TH AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP 2005, PROCEEDINGS, 2005, : 119 - 124
  • [47] Optimal binary codes from one-lee weight codes and two-lee weight projective codes over ℤ4
    Minjia Shi
    Yu Wang
    Journal of Systems Science and Complexity, 2014, 27 : 795 - 810
  • [48] A class of algebraic-geometric codes for Lee-metric and their decoding
    Wu, XW
    Kuijper, M
    Udaya, P
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 77 - 77
  • [49] New table of Bounds on Permutation Codes under Kendall τ-Metric
    Abdollahi, Alireza
    Bagherian, Javad
    Jafari, Fatemeh
    Khatami, Maryam
    Parvaresh, Farzad
    Sobhani, Reza
    2022 10TH IRAN WORKSHOP ON COMMUNICATION AND INFORMATION THEORY, IWCIT, 2022,
  • [50] Optimal Locally Repairable Codes via Rank-Metric Codes
    Silberstein, Natalia
    Rawat, Ankit Singh
    Koyluoglu, O. Ozan
    Vishwanath, Sriram
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1819 - 1823