Bounds in the Lee metric and optimal codes

被引:4
|
作者
Byrne, Eimear [1 ]
Weger, Violetta [2 ]
机构
[1] Univ Coll Dublin, Dublin 4, Dublin D04V1W8, Ireland
[2] Tech Univ Munich, Theresienstr 90, D-80799 Munich, Germany
基金
瑞士国家科学基金会;
关键词
Ring-linear code; Lee distance; Maximum Lee distance; Bounds; Constant weight codes; FINITE; SPARSENESS; GENERICITY; DISTANCE;
D O I
10.1016/j.ffa.2022.102151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate known Singleton-like bounds in the Lee metric and characterize their extremal codes, which turn out to be very few. We then focus on Plotkin-like bounds in the Lee metric and present a new bound that extends and refines a previously known, and out-performs it in the case of non-free codes. We then compute the density of extremal codes with regard to the new bound. Finally we fill a gap in the characterization of Lee-equidistant codes. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Bounds on the Size of Permutation Codes With the Kendall τ-Metric
    Buzaglo, Sarit
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3241 - 3250
  • [22] New Bounds for Permutation Codes in Ulam Metric
    Gologlu, Faruk
    Lember, Juri
    Riet, Ago-Erik
    Skachek, Vitaly
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1726 - 1730
  • [23] Energy bounds for codes in polynomial metric spaces
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (02) : 781 - 808
  • [24] ON CONSTRUCTING CODES WITH GIVEN DISTANCE IN LEE-METRIC.
    Racsmany, A.
    Problems of control and information theory, 1986, 15 (05): : 377 - 384
  • [25] ON CONSTRUCTING CODES WITH GIVEN DISTANCE IN LEE-METRIC
    RACSMANY, A
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1986, 15 (05): : 377 - 384
  • [26] On lower bounds for the redundancy of optimal codes
    de, Prisco, Roberto
    de Santis, Alfredo
    Designs, Codes, and Cryptography, 1998, 15 (01): : 29 - 45
  • [27] On Lower Bounds for the Redundancy of Optimal Codes
    Roberto De Prisco
    Alfredo De Santis
    Designs, Codes and Cryptography, 1998, 15 (1) : 29 - 45
  • [28] NOTE ON BOUNDS FOR BURST CORRECTING CODES WITH LEE WEIGHT CONSIDERATION
    SHARMA, BD
    GOEL, SN
    INFORMATION AND CONTROL, 1977, 33 (03): : 210 - 216
  • [29] Construction of optimal edit metric codes
    Houghten, Sheridan K.
    Ashlock, Dan
    Lenarz, Jessie
    PROCEEDINGS OF 2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 259 - +
  • [30] Decoding Algorithm and Architecture for BCH Codes under the Lee Metric
    Wu, Yingquan
    Hadjicostis, Christoforos N.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (12) : 2050 - 2059