REDUCTION OF POSITIVE SELF-ADJOINT EXTENSIONS

被引:0
|
作者
Tarcsay, Zsigmond [1 ,2 ]
Sebestyen, Zoltan [2 ]
机构
[1] Corvinus Univ Budapest, Dept Math, IX Fovam Ter 13-15, H-1093 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词
positive selfadjoint contractive extension; nonnegative selfadjoint extension; Friedrichs and Krein-von Neumann extension; OPERATORS; FACTORIZATION;
D O I
10.7494/OpMath.2024.44.3.425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revise Krein's extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the "resolvent operator" (I + T)(-1) of T. Our treatment is somewhat simpler and more natural than Krein's original method which was based on the Krein transform (I-T)(I+T)(-1). Apart from being positive and symmetric, we do not impose any further constraints on the operator T: neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.
引用
收藏
页码:425 / 438
页数:14
相关论文
共 50 条
  • [41] Fullerenes, zero-modes and self-adjoint extensions
    Roy, A.
    Stone, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
  • [42] Self-adjoint and Markovian extensions of infinite quantum graphs
    Kostenko, Aleksey
    Mugnolo, Delio
    Nicolussi, Noema
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (02): : 1262 - 1313
  • [43] Self-adjoint extensions of operators and the teaching of quantum mechanics
    Bonneau, G
    Faraut, J
    Valent, G
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) : 322 - 331
  • [44] Quasinormal modes and self-adjoint extensions of the Schrodinger operator
    Fabris, Julio C.
    Richarte, Martin G.
    Saa, Alberto
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [45] On the reduction of powers of self-adjoint operators
    Kebli, Salima
    Mortad, Mohammed Hichem
    QUAESTIONES MATHEMATICAE, 2025,
  • [46] Non-supersymmetric vacua and self-adjoint extensions
    Mourad, J.
    Sagnotti, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [47] SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS OF A SYMMETRIC OPERATOR
    MCKELVEY, R
    PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (03) : 1003 - &
  • [48] Self-adjoint extensions of differential operators on Riemannian manifolds
    Ognjen Milatovic
    Françoise Truc
    Annals of Global Analysis and Geometry, 2016, 49 : 87 - 103
  • [49] SELF-ADJOINT EXTENSIONS OF A SCHRODINGER OPERATOR WITH SINGULAR POTENTIAL
    KOCHUBEI, AN
    SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (03) : 401 - 409
  • [50] Self-adjoint extensions for singular linear Hamiltonian systems
    Sun, Huaqing
    Shi, Yuming
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 797 - 814