REDUCTION OF POSITIVE SELF-ADJOINT EXTENSIONS

被引:0
|
作者
Tarcsay, Zsigmond [1 ,2 ]
Sebestyen, Zoltan [2 ]
机构
[1] Corvinus Univ Budapest, Dept Math, IX Fovam Ter 13-15, H-1093 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词
positive selfadjoint contractive extension; nonnegative selfadjoint extension; Friedrichs and Krein-von Neumann extension; OPERATORS; FACTORIZATION;
D O I
10.7494/OpMath.2024.44.3.425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revise Krein's extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the "resolvent operator" (I + T)(-1) of T. Our treatment is somewhat simpler and more natural than Krein's original method which was based on the Krein transform (I-T)(I+T)(-1). Apart from being positive and symmetric, we do not impose any further constraints on the operator T: neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.
引用
收藏
页码:425 / 438
页数:14
相关论文
共 50 条
  • [21] SPECTRA OF SELF-ADJOINT EXTENSIONS OF A SYMMETRIC OPERATOR
    KOCHUBEI, AN
    MATHEMATICAL NOTES, 1976, 19 (3-4) : 262 - 265
  • [22] On Self-Adjoint Extensions and Symmetries in Quantum Mechanics
    Alberto Ibort
    Fernando Lledó
    Juan Manuel Pérez-Pardo
    Annales Henri Poincaré, 2015, 16 : 2367 - 2397
  • [23] Self-adjoint extensions of phase and time operators
    Gour, G
    Khanna, FC
    Revzen, M
    PHYSICAL REVIEW A, 2004, 69 (01): : 4
  • [24] An analytic characterization of the eigenvalues of self-adjoint extensions
    Behrndt, Jussi
    Luger, Annemarie
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) : 607 - 640
  • [25] Self-adjoint extensions for the Neumann Laplacian and applications
    Nazarov, S. A.
    Sokolowski, J.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 879 - 906
  • [26] GENERALIZED SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS
    TSEKANOVSKII, ER
    DOKLADY AKADEMII NAUK SSSR, 1968, 178 (06): : 1267 - +
  • [27] A characterization of positive self-adjoint extensions and its application to ordinary differential operators
    Wei, GS
    Jiang, YL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2985 - 2995
  • [28] Self-Adjoint Extensions with Friedrichs Lower Bound
    Gallone, Matteo
    Michelangeli, Alessandro
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (07)
  • [29] Self-adjoint extensions and unitary operators on the boundary
    Paolo Facchi
    Giancarlo Garnero
    Marilena Ligabò
    Letters in Mathematical Physics, 2018, 108 : 195 - 212
  • [30] On Self-Adjoint Extensions and Symmetries in Quantum Mechanics
    Ibort, Alberto
    Lledo, Fernando
    Manuel Perez-Pardo, Juan
    ANNALES HENRI POINCARE, 2015, 16 (10): : 2367 - 2397