Gravitational traces of bumblebee gravity in metric-affine formalism

被引:17
|
作者
Araujo Filho, A. A. [1 ,2 ,3 ]
Hassanabadi, H. [4 ,5 ]
Heidari, N. [5 ]
Kriz, J. [4 ]
Zare, S. [4 ]
机构
[1] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain
[2] Univ Valencia, Ctr Mixto Univ Valencia, IFIC, CSIC, Burjassot 46100, Valencia, Spain
[3] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, PB, Brazil
[4] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[5] Shahrood Univ Technol, Phys Dept, Shahrood, Iran
关键词
bumblebee gravity; metric affine formalism; shadows; QUASI-NORMAL MODES; HOLE NORMAL-MODES; BLACK-HOLES; GAUGE-THEORY; WKB APPROACH; FOUNDATIONS; EVOLUTION; SHADOW; STARS;
D O I
10.1088/1361-6382/ad1712
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] FIELD EQUATIONS OF METRIC-AFFINE GRAVITATIONAL THEORIES
    ALDERSLEY, SJ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1978, 33 (04): : 398 - 401
  • [32] Comment on ?A comment on metric vs metric-affine gravity?
    Olmo, Gonzalo J.
    Porfirio, P. J.
    NUCLEAR PHYSICS B, 2023, 987
  • [33] METRIC-AFFINE GRAVITATIONAL THEORY AS GAUGE THEORY OF AFFINE GROUP
    LORD, EA
    PHYSICS LETTERS A, 1978, 65 (01) : 1 - 4
  • [34] Electroweak vacuum decay in metric-affine gravity
    Gialamas, Ioannis D.
    Veermae, Hardi
    PHYSICS LETTERS B, 2023, 844
  • [35] The Perfect Hyperfluid of Metric-Affine Gravity: the foundation
    Iosifidis, Damianos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (04):
  • [36] Interiors of Terrestrial Planets in Metric-Affine Gravity
    Kozak, Aleksander
    Wojnar, Aneta
    UNIVERSE, 2022, 8 (01)
  • [37] Metric-Affine Gravity and the Geometric Nature of Matter
    Fasihi-Ramandi, Ghodratallah
    Azami, Shahroud
    Pirhadi, Vahid
    GRAVITATION & COSMOLOGY, 2022, 28 (02): : 102 - 107
  • [38] A Numeric Solution for Einstein's Gravitational Theory with Proca Matter and Metric-Affine Gravity
    Marc Toussaint
    General Relativity and Gravitation, 2000, 32 : 1689 - 1709
  • [39] METRIC-AFFINE SCALE-COVARIANT GRAVITY
    POBERII, EA
    GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (10) : 1011 - 1054
  • [40] Cosmological perturbation theory in metric-affine gravity
    Aoki, Katsuki
    Bahamonde, Sebastian
    Valcarcel, Jorge Gigante
    Gorji, Mohammad Ali
    PHYSICAL REVIEW D, 2024, 110 (02)