Cosmological perturbation theory in metric-affine gravity

被引:5
|
作者
Aoki, Katsuki [1 ]
Bahamonde, Sebastian [2 ,3 ]
Valcarcel, Jorge Gigante [2 ]
Gorji, Mohammad Ali [4 ,5 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Ctr Gravitat Phys & Quantum Informat, Kyoto 6068502, Japan
[2] Tokyo Inst Technol, Dept Phys, 1-12-1 Ookayama,Meguro Ku, Tokyo 1528551, Japan
[3] Univ Tokyo, Univ Tokyo Inst Adv Study UTIAS, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[4] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Cosmol Grav & Astroparticle Phys Grp, Daejeon 34126, South Korea
[5] Univ Barcelona, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, Marti & Franques 1, Barcelona 08028, Spain
基金
日本学术振兴会;
关键词
POINCARE GAUGE-THEORY; HAMILTONIAN ANALYSIS; FIELD-EQUATIONS; SPIN; UNIVERSE; TORSION; INFLATION; CONSTANT; LAMBDA; MODEL;
D O I
10.1103/PhysRevD.110.024017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate cosmological perturbation theory around the spatially curved FLRW background in the context of metric-affine gauge theory of gravity which includes torsion and nonmetricity. Performing scalar-vector-tensor decomposition of the spatial perturbations, we find that the theory displays a rich perturbation spectrum with helicities 0, 1, 2, and 3, on top of the usual scalar, vector, and tensor metric perturbations arising from Riemannian geometry. Accordingly, the theory provides a diverse phenomenology, e.g. the helicity-2 modes of the torsion and/or nonmetricity tensors source helicity-2 metric tensor perturbation at the linear level leading to the production of gravitational waves. As an immediate application, we study linear perturbation of the nonmetricity helicity-3 modes for a general parity-preserving action of metric-affine gravity which includes quadratic terms in curvature, torsion, and nonmetricity. We then find the conditions to avoid possible instabilities in the helicity-3 modes of the spin-3 field.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Gravitational waves in metric-affine gravity theory
    Jimenez-Cano, Alejandro
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2021, 103 (02)
  • [2] Metric-Affine Gravity as an effective field theory
    Baldazzi, A.
    Melichev, O.
    Percacci, R.
    ANNALS OF PHYSICS, 2022, 438
  • [3] The dynamics of metric-affine gravity
    Vitagliano, Vincenzo
    Sotiriou, Thomas P.
    Liberati, Stefano
    ANNALS OF PHYSICS, 2011, 326 (05) : 1259 - 1273
  • [4] Quadratic metric-affine gravity
    Vassiliev, D
    ANNALEN DER PHYSIK, 2005, 14 (04) : 231 - 252
  • [5] Metric-affine gravity and inflation
    Shimada, Keigo
    Aoki, Katsuki
    Maeda, Kei-ichi
    PHYSICAL REVIEW D, 2019, 99 (10)
  • [6] Exact cosmological models in metric-affine F(R, T) gravity
    Maurya, Dinesh Chandra
    Myrzakulov, Ratbay
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (06):
  • [7] Metric-Affine F(T,Q) gravity: cosmological implications and constraints
    Maurya, Dinesh Chandra
    Yesmakhanova, K.
    Myrzakulov, R.
    Nugmanova, G.
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [8] A comment on metric vs metric-affine gravity
    Lindstrom, Ulf
    Sarioglu, Ozgur
    PHYSICS LETTERS B, 2023, 836
  • [9] Trace anomaly in metric-affine gravity
    Bahamonde, Sebastian
    Miyashita, Yuichi
    Yamaguchi, Masahide
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [10] Towards metric-affine quantum gravity
    Percacci, Roberto
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17