Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation

被引:9
|
作者
Van Bavel, B. [1 ]
Zhao, Y. [2 ]
Faes, M. G. R. [3 ]
Vandepitte, D. [1 ]
Moens, D. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, LMSD, Celestijnenlaan 300, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Met & Mat Engn, SCALINT, Kasteelpk Arenberg 44, B-3001 Heverlee, Belgium
[3] TU Dortmund Univ, Chair Reliabil Engn, Leonhard Euler Str 5, D-44227 Dortmund, Germany
关键词
Multiscale; Reliability analysis; Finite element analysis (FEA); Spatial variability; Vine copula modelling; Unidirectional (UD); Carbon-fibre-reinforced polymers (CFRP); Strength prediction; UNIDIRECTIONAL COMPOSITES; PRESSURE; FAILURE; STRENGTH; ELEMENT; LAW;
D O I
10.1016/j.compstruct.2023.117462
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Composite structures suffer from material imperfections. Non-deterministic models at the micro- and mesoscale propagate this spatial variability. However, they become impractical when the structure size increases. This paper proposes a numerically efficient multiscale methodology that links structural behaviour with the spatial variability of material imperfections on smaller scales. Fibre strength variability is accounted for through a fibre break model. A mesoscale model considers fibre volume fraction and fibre misalignment variability using random fields. Measurements provide probabilistic data for these imperfections. Subsequent homogenisation results in intercorrelated material properties on the structural macroscale that are modelled effectively with vine copulas. The methodology is verified by predicting the failure load of a coupon model. Predictions are very similar to those obtained by directly modelling spatial variability on the structural scale.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multivariate correlation in the framework of support and spatial scales of variability
    Vargas-Guzmán, JA
    Warrick, AW
    Myers, DE
    MATHEMATICAL GEOLOGY, 1999, 31 (01): : 85 - 103
  • [32] Integrated framework for characterization of spatial variability of geological profiles
    Liu, W. F.
    Leung, Y. F.
    Lo, M. K.
    CANADIAN GEOTECHNICAL JOURNAL, 2017, 54 (01) : 47 - 58
  • [33] Multivariate correlation in the framework of support and spatial scales of variability
    Vargas-Guzmán J.A.
    Warrick A.W.
    Myers D.E.
    Mathematical Geology, 1999, 31 (1): : 85 - 103
  • [34] Comparative Analysis of the Permutation and Multiscale Entropies for Quantification of the Brain Signal Variability in Naturalistic Scenarios
    Keshmiri, Soheil
    BRAIN SCIENCES, 2020, 10 (08) : 1 - 37
  • [35] A Multiscale Spatial-Temporal Features Fusion Framework for Indoor Localization
    Liu, Minmin
    Liao, Xuewen
    Zhang, Yi
    Gao, Zhenzhen
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23098 - 23107
  • [36] A PARALLELIZED GENERALIZED METHOD OF CELLS FRAMEWORK FOR MULTISCALE STUDIES OF COMPOSITE MATERIALS
    Rai, Ashwin
    Skinner, Travis
    Chattopadhyay, Aditi
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 9, 2020,
  • [37] An experimental characterisation of spatial variability in GFRP composite panels
    Sriramula, Srinivas
    Chryssanthopoulos, Marios K.
    STRUCTURAL SAFETY, 2013, 42 : 1 - 11
  • [38] A framework for efficient spatial web object retrieval
    Dingming Wu
    Gao Cong
    Christian S. Jensen
    The VLDB Journal, 2012, 21 : 797 - 822
  • [39] A framework for efficient spatial web object retrieval
    Wu, Dingming
    Cong, Gao
    Jensen, Christian S.
    VLDB JOURNAL, 2012, 21 (06): : 797 - 822
  • [40] Efficient uncertainty quantification in a spatially multiscale model of pulmonary arterial and venous hemodynamics
    Colebank, M. J.
    Chesler, N. C.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2024, 23 (06) : 1909 - 1931