Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation

被引:9
|
作者
Van Bavel, B. [1 ]
Zhao, Y. [2 ]
Faes, M. G. R. [3 ]
Vandepitte, D. [1 ]
Moens, D. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, LMSD, Celestijnenlaan 300, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Met & Mat Engn, SCALINT, Kasteelpk Arenberg 44, B-3001 Heverlee, Belgium
[3] TU Dortmund Univ, Chair Reliabil Engn, Leonhard Euler Str 5, D-44227 Dortmund, Germany
关键词
Multiscale; Reliability analysis; Finite element analysis (FEA); Spatial variability; Vine copula modelling; Unidirectional (UD); Carbon-fibre-reinforced polymers (CFRP); Strength prediction; UNIDIRECTIONAL COMPOSITES; PRESSURE; FAILURE; STRENGTH; ELEMENT; LAW;
D O I
10.1016/j.compstruct.2023.117462
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Composite structures suffer from material imperfections. Non-deterministic models at the micro- and mesoscale propagate this spatial variability. However, they become impractical when the structure size increases. This paper proposes a numerically efficient multiscale methodology that links structural behaviour with the spatial variability of material imperfections on smaller scales. Fibre strength variability is accounted for through a fibre break model. A mesoscale model considers fibre volume fraction and fibre misalignment variability using random fields. Measurements provide probabilistic data for these imperfections. Subsequent homogenisation results in intercorrelated material properties on the structural macroscale that are modelled effectively with vine copulas. The methodology is verified by predicting the failure load of a coupon model. Predictions are very similar to those obtained by directly modelling spatial variability on the structural scale.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] A computational framework for multiscale analysis of laminated composite plates
    Mourad H.M.
    Williams T.O.
    Addessio F.L.
    Solid Mechanics and its Applications, 2010, 168 : 131 - 144
  • [12] Multiscale Characterization of Spatial Heterogeneity in Multiphase Composite Microstructures
    Tschopp, M. A.
    Wilks, G. B.
    Spowart, J. E.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (01):
  • [13] A Comparison of Efficient Uncertainty Quantification Techniques for Stochastic Multiscale Systems
    Kimaev, Grigoriy
    Ricardez-Sandoval, Luis A.
    AICHE JOURNAL, 2017, 63 (08) : 3361 - 3373
  • [14] A multiscale framework for the origin and variability of the South Pacific Convergence Zone
    Matthews, Adrian J.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (666) : 1165 - 1178
  • [15] An efficient hierarchical Bayesian framework for multiscale material modeling
    Pyrialakos, Stefanos
    Kalogeris, Ioannis
    Papadopoulos, Vissarion
    COMPOSITE STRUCTURES, 2025, 351
  • [16] An efficient multiscale surrogate modelling framework for composite materials considering progressive damage based on artificial neural networks
    Yan, Shibo
    Zou, Xi
    Ilkhani, Mohammad
    Jones, Arthur
    COMPOSITES PART B-ENGINEERING, 2020, 194
  • [17] Probabilistic micromechanical spatial variability quantification in laminated composites
    Naskar, S.
    Mukhopadhyay, T.
    Sriramula, S.
    COMPOSITES PART B-ENGINEERING, 2018, 151 : 291 - 325
  • [18] Multiscale structure of UXO site characterization: spatial estimation and uncertainty quantification
    G. Ostrouchov
    W. E. Doll
    L. P. Beard
    M. D. Morris
    D. A. Wolf
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 215 - 225
  • [19] Multiscale structure of UXO site characterization: spatial estimation and uncertainty quantification
    Ostrouchov, G.
    Doll, W. E.
    Beard, L. P.
    Morris, M. D.
    Wolf, D. A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (02) : 215 - 225
  • [20] Multiscale damage modelling for composite materials: theory and computational framework
    Fish, J
    Yu, Q
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (1-2) : 159 - 191