Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation

被引:9
|
作者
Van Bavel, B. [1 ]
Zhao, Y. [2 ]
Faes, M. G. R. [3 ]
Vandepitte, D. [1 ]
Moens, D. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, LMSD, Celestijnenlaan 300, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Met & Mat Engn, SCALINT, Kasteelpk Arenberg 44, B-3001 Heverlee, Belgium
[3] TU Dortmund Univ, Chair Reliabil Engn, Leonhard Euler Str 5, D-44227 Dortmund, Germany
关键词
Multiscale; Reliability analysis; Finite element analysis (FEA); Spatial variability; Vine copula modelling; Unidirectional (UD); Carbon-fibre-reinforced polymers (CFRP); Strength prediction; UNIDIRECTIONAL COMPOSITES; PRESSURE; FAILURE; STRENGTH; ELEMENT; LAW;
D O I
10.1016/j.compstruct.2023.117462
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Composite structures suffer from material imperfections. Non-deterministic models at the micro- and mesoscale propagate this spatial variability. However, they become impractical when the structure size increases. This paper proposes a numerically efficient multiscale methodology that links structural behaviour with the spatial variability of material imperfections on smaller scales. Fibre strength variability is accounted for through a fibre break model. A mesoscale model considers fibre volume fraction and fibre misalignment variability using random fields. Measurements provide probabilistic data for these imperfections. Subsequent homogenisation results in intercorrelated material properties on the structural macroscale that are modelled effectively with vine copulas. The methodology is verified by predicting the failure load of a coupon model. Predictions are very similar to those obtained by directly modelling spatial variability on the structural scale.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Computationally Efficient Concurrent Multiscale Framework for the Nonlinear Analysis of Composite Structures
    Kaleel, I
    Petrolo, M.
    Carrera, E.
    Waas, A. M.
    AIAA JOURNAL, 2019, 57 (09) : 4029 - 4041
  • [2] MULTISCALE VARIABILITY AND UNCERTAINTY QUANTIFICATION BASED ON A GENERALIZED MULTISCALE MARKOV MODEL
    Wang, Yan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2010, VOL 1, PTS A AND B, 2010, : 1077 - 1087
  • [3] A multiscale framework for spatial gamut mapping
    Farup, Ivar
    Gatta, Carlo
    Rizzi, Alessandro
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) : 2423 - 2435
  • [4] Uncertainty Quantification of Multiscale Composite Damage Initiation and Progression
    Johnston, J.
    Borkowski, L.
    Chattopadhyay, A.
    STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, 2013, : 1770 - 1777
  • [5] A clustering-based multiscale topology optimization framework for efficient design of porous composite structures
    Liu, Jinlong
    Zou, Zhiqiang
    Li, Zeyang
    Zhang, Min
    Yang, Jie
    Gao, Kang
    Wu, Zhangming
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 439
  • [6] Spatial variability of Australian soil texture: A multiscale analysis
    Paterson, Stacey
    Minasny, Budiman
    McBratney, Alex
    GEODERMA, 2018, 309 : 60 - 74
  • [7] CHARACTERIZING MULTISCALE VARIABILITY OF ZERO INTERMITTENCY IN SPATIAL RAINFALL
    KUMAR, P
    FOUFOULA-GEORGIOU, E
    JOURNAL OF APPLIED METEOROLOGY, 1994, 33 (12): : 1516 - 1525
  • [8] An imprecise multiscale uncertainty quantification framework for fiber reinforced composites
    Zhao, Haodong
    Zhou, Changcong
    PROBABILISTIC ENGINEERING MECHANICS, 2024, 78
  • [9] Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals
    Yang, Hui
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (02) : 339 - 347
  • [10] A multiscale spatial modeling framework for the germinal center response
    Mu, Derek P.
    Scharer, Christopher D.
    Kaminski, Norbert E.
    Zhang, Qiang
    FRONTIERS IN IMMUNOLOGY, 2024, 15