Revisiting Consistency Regularization for Semi-Supervised Learning

被引:30
|
作者
Fan, Yue [1 ]
Kukleva, Anna [1 ]
Dai, Dengxin [1 ]
Schiele, Bernt [1 ]
机构
[1] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
关键词
Semi-supervised learning; Consistency regularization; Representation learning; Classification;
D O I
10.1007/s11263-022-01723-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consistency regularization is one of the most widely-used techniques for semi-supervised learning (SSL). Generally, the aim is to train a model that is invariant to various data augmentations. In this paper, we revisit this idea and find that enforcing invariance by decreasing distances between features from differently augmented images leads to improved performance. However, encouraging equivariance instead, by increasing the feature distance, further improves performance. To this end, we propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss, that imposes consistency and equivariance on the classifier and the feature level, respectively. Experimental results show that our model defines a new state of the art across a variety of standard semi-supervised learning benchmarks as well as imbalanced semi-supervised learning benchmarks. Particularly, we outperform previous work by a significant margin in low data regimes and at large imbalance ratios. Extensive experiments are conducted to analyze the method, and the code will be published.
引用
收藏
页码:626 / 643
页数:18
相关论文
共 50 条
  • [41] Dual consistency semi-supervised nuclei detection via global regularization and local adversarial learning
    Su, Lei
    Wang, Zhi
    Zhu, Xiaoya
    Meng, Gang
    Wang, Minghui
    Li, Ao
    NEUROCOMPUTING, 2023, 529 : 204 - 213
  • [42] Consistency regularization teacher–student semi-supervised learning method for target recognition in SAR images
    Ye Tian
    Liguo Zhang
    Jianguo Sun
    Guisheng Yin
    Yuxin Dong
    The Visual Computer, 2022, 38 : 4179 - 4192
  • [43] A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing
    Yu, Kun
    Ma, Hui
    Lin, Tian Ran
    Li, Xiang
    MEASUREMENT, 2020, 165
  • [44] Online Semi-Supervised Learning With Multiple Regularization Terms
    Chen, Chao
    Sun, Boliang
    Hu, Xingchen
    Li, Yan
    IEEE ACCESS, 2019, 7 : 68479 - 68494
  • [45] Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
    Xu, Hai-Ming
    Liu, Lingqiao
    Bian, Qiuchen
    Yang, Zhen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [46] ConvNeXt based semi-supervised approach with consistency regularization for weeds classification
    Benchallal, Farouq
    Hafiane, Adel
    Ragot, Nicolas
    Canals, Raphael
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [47] Semi-Supervised Specific Emitter Identification via Dual Consistency Regularization
    Fu, Xue
    Shi, Shengnan
    Wang, Yu
    Lin, Yun
    Gui, Guan
    Dobre, Octavia A.
    Mao, Shiwen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 19257 - 19269
  • [48] Noise-robust consistency regularization for semi-supervised semantic segmentation
    Zhang, Haikuan
    Li, Haitao
    Zhang, Xiufeng
    Yang, Guanyu
    Li, Atao
    Du, Weisheng
    Xue, Shanshan
    Liu, Chi
    NEURAL NETWORKS, 2025, 184
  • [49] Perturbation consistency and mutual information regularization for semi-supervised semantic segmentation
    Wu, Yulin
    Liu, Chang
    Chen, Lei
    Zhao, Dong
    Zheng, Qinghe
    Zhou, Hongchao
    MULTIMEDIA SYSTEMS, 2023, 29 (02) : 511 - 523
  • [50] Perturbation consistency and mutual information regularization for semi-supervised semantic segmentation
    Yulin Wu
    Chang Liu
    Lei Chen
    Dong Zhao
    Qinghe Zheng
    Hongchao Zhou
    Multimedia Systems, 2023, 29 : 511 - 523