Revisiting Consistency Regularization for Semi-Supervised Learning

被引:30
|
作者
Fan, Yue [1 ]
Kukleva, Anna [1 ]
Dai, Dengxin [1 ]
Schiele, Bernt [1 ]
机构
[1] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
关键词
Semi-supervised learning; Consistency regularization; Representation learning; Classification;
D O I
10.1007/s11263-022-01723-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consistency regularization is one of the most widely-used techniques for semi-supervised learning (SSL). Generally, the aim is to train a model that is invariant to various data augmentations. In this paper, we revisit this idea and find that enforcing invariance by decreasing distances between features from differently augmented images leads to improved performance. However, encouraging equivariance instead, by increasing the feature distance, further improves performance. To this end, we propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss, that imposes consistency and equivariance on the classifier and the feature level, respectively. Experimental results show that our model defines a new state of the art across a variety of standard semi-supervised learning benchmarks as well as imbalanced semi-supervised learning benchmarks. Particularly, we outperform previous work by a significant margin in low data regimes and at large imbalance ratios. Extensive experiments are conducted to analyze the method, and the code will be published.
引用
收藏
页码:626 / 643
页数:18
相关论文
共 50 条
  • [21] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    The Journal of China Universities of Posts and Telecommunications, 2012, (06) : 79 - 88
  • [22] MANIFOLD REGULARIZATION FOR SEMI-SUPERVISED SEQUENTIAL LEARNING
    Moh, Yvonne
    Buhmann, Joachim M.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1617 - 1620
  • [23] Semi-supervised learning via manifold regularization
    Mao, Yu
    Zhou, Yan-Quan
    Li, Rui-Fan
    Wang, Xiao-Jie
    Zhong, Yi-Xin
    Journal of China Universities of Posts and Telecommunications, 2012, 19 (06): : 79 - 88
  • [24] Pointwise manifold regularization for semi-supervised learning
    Yunyun Wang
    Jiao Han
    Yating Shen
    Hui Xue
    Frontiers of Computer Science, 2021, 15
  • [25] Pointwise manifold regularization for semi-supervised learning
    Yunyun WANG
    Jiao HAN
    Yating SHEN
    Hui XUE
    Frontiers of Computer Science, 2021, (01) : 76 - 83
  • [26] Semi-supervised learning via manifold regularization
    MAO Yu
    ZHOU Yan-quan
    LI Rui-fan
    WANG Xiao-jie
    ZHONG Yi-xin
    The Journal of China Universities of Posts and Telecommunications, 2012, 19 (06) : 79 - 88
  • [27] Lautum Regularization for Semi-Supervised Transfer Learning
    Jakubovitz, Daniel
    Giryes, Raja
    Rodrigues, Miguel R. D.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 763 - 767
  • [28] Semi-supervised Learning with Explicit Relationship Regularization
    Kim, Kwang In
    Tompkin, James
    Pfister, Hanspeter
    Theobalt, Christian
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2188 - 2196
  • [29] Dual Dynamic Consistency Regularization for Semi-Supervised Domain Adaptation
    Ngo, Ba Hung
    Lam, Ba Thinh
    Nguyen, Thanh Huy
    Dinh, Quang Vinh
    Choi, Tae Jong
    IEEE ACCESS, 2024, 12 : 36267 - 36279
  • [30] Semi-supervised Nuclei Segmentation Based on Consistency Regularization Constraint
    Shu J.
    Nian F.
    Lü G.
    Nian, Fudong (nianfd@hfuu.edu.cn), 1600, Science Press (33): : 643 - 652