Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion

被引:7
|
作者
Cao, Yinfeng [1 ]
Moumni, Ziad [1 ,2 ]
Zhu, Jihong [1 ,4 ]
Gu, Xiaojun [1 ,3 ]
Zhang, Yahui [1 ]
Zhai, Xingyue [1 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Xian 710072, Peoples R China
[2] Inst Polytech Paris, ENSTA Paris, UME, F-91120 Palaiseau, France
[3] Northwestern Polytech Univ, Inst Intelligence Mat & Struct, Unmanned Syst Technol, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, MIIT Lab Met Addit Mfg & Innovat Design, Xian 710072, Peoples R China
关键词
Fatigue; Laser powder bed fusion; 316L steel; Scanning speed; Dislocation-density-based crystal plasticity; Stored energy; PROCESS PARAMETERS; STORED ENERGY; PLASTIC-DEFORMATION; SURFACE-ROUGHNESS; HEAT; MICROSTRUCTURE; DENSITY; PROPERTY;
D O I
10.1016/j.jmatprotec.2023.118043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of the scanning speed on the fatigue behavior of Laser Powder Bed Fusion (LPBF)-fabricated 316L steel is investigated in this paper. To this end, fatigue limits of specimen manufactured by different scanning speeds are determined by the self-heating approach. EBSD experiments and relative density measurements are carried out to characterize the microstructure and porosity. To analyze the influence of scanning speed on the microstructure (grain morphology, texture, dislocation density and stored energy) and fatigue property, a dislocation-density, crystal plasticity and stored energy-based fatigue model is developed. The inverse optimization method is combined with EBSD experiments and uniaxial tension experiments to identify the model parameters. The experimental results show a critical scanning speed, below which the fatigue limit stays almost unchanged and decreases drastically while the scanning speed is increased beyond. Furthermore, the simulation results show that the predicted fatigue limits correspond well to the experimental fatigue ones. From experimental and numerical results, it is deduced that the critical stored energy density and maximum temperature variation are functions of the porosity and can be used to differentiate the types of fatigue: microstructure-dominated or defect-dominated. This article provides new insights which can be further used in the optimization of fatigue behavior of LPBF 316L steel with respect to the scanning speed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L
    Meng Zhang
    Chen-Nan Sun
    Xiang Zhang
    Phoi Chin Goh
    Jun Wei
    Hua Li
    David Hardacre
    JOM, 2018, 70 : 390 - 395
  • [42] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38
  • [43] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458
  • [44] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Gennaro Salvatore Ponticelli
    Simone Venettacci
    Oliviero Giannini
    Stefano Guarino
    Matthias Horn
    Progress in Additive Manufacturing, 2023, 8 : 437 - 458
  • [45] Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel
    Bertoli, Umberto Scipioni
    MacDonald, Benjamin E.
    Schoenung, Julie M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 739 : 109 - 117
  • [46] Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 : 251 - 261
  • [47] Effect of laser scan pattern in laser powder bed fusion process : The case of 316L stainless steel
    Roirand, Hugo
    Malard, Benoit
    Hor, Anis
    Saintier, Nicolas
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 149 - 158
  • [48] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Ali Eliasu
    Aleksander Czekanski
    Solomon Boakye-Yiadom
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 2651 - 2669
  • [49] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Eliasu, Ali
    Czekanski, Aleksander
    Boakye-Yiadom, Solomon
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (9-10): : 2651 - 2669
  • [50] Influence of the Processing Parameters on the Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Barrionuevo, German Omar
    Ramos-Grez, Jorge Andres
    Sanchez-Sanchez, Xavier
    Zapata-Hidalgo, Daniel
    Mullo, Jose Luis
    Puma-Araujo, Santiago D.
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (01):