Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion

被引:7
|
作者
Cao, Yinfeng [1 ]
Moumni, Ziad [1 ,2 ]
Zhu, Jihong [1 ,4 ]
Gu, Xiaojun [1 ,3 ]
Zhang, Yahui [1 ]
Zhai, Xingyue [1 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Xian 710072, Peoples R China
[2] Inst Polytech Paris, ENSTA Paris, UME, F-91120 Palaiseau, France
[3] Northwestern Polytech Univ, Inst Intelligence Mat & Struct, Unmanned Syst Technol, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, MIIT Lab Met Addit Mfg & Innovat Design, Xian 710072, Peoples R China
关键词
Fatigue; Laser powder bed fusion; 316L steel; Scanning speed; Dislocation-density-based crystal plasticity; Stored energy; PROCESS PARAMETERS; STORED ENERGY; PLASTIC-DEFORMATION; SURFACE-ROUGHNESS; HEAT; MICROSTRUCTURE; DENSITY; PROPERTY;
D O I
10.1016/j.jmatprotec.2023.118043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of the scanning speed on the fatigue behavior of Laser Powder Bed Fusion (LPBF)-fabricated 316L steel is investigated in this paper. To this end, fatigue limits of specimen manufactured by different scanning speeds are determined by the self-heating approach. EBSD experiments and relative density measurements are carried out to characterize the microstructure and porosity. To analyze the influence of scanning speed on the microstructure (grain morphology, texture, dislocation density and stored energy) and fatigue property, a dislocation-density, crystal plasticity and stored energy-based fatigue model is developed. The inverse optimization method is combined with EBSD experiments and uniaxial tension experiments to identify the model parameters. The experimental results show a critical scanning speed, below which the fatigue limit stays almost unchanged and decreases drastically while the scanning speed is increased beyond. Furthermore, the simulation results show that the predicted fatigue limits correspond well to the experimental fatigue ones. From experimental and numerical results, it is deduced that the critical stored energy density and maximum temperature variation are functions of the porosity and can be used to differentiate the types of fatigue: microstructure-dominated or defect-dominated. This article provides new insights which can be further used in the optimization of fatigue behavior of LPBF 316L steel with respect to the scanning speed.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Andreatta, Francesco
    Lanzutti, Alex
    Revilla, Reynier, I
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    de Graeve, Iris
    Fedrizzi, Lorenzo
    MATERIALS, 2022, 15 (19)
  • [32] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue, P. J.
    Beste, V
    Richter, B.
    Agrawal, A.
    Klingbeil, K.
    Thoma, D.
    Radel, T.
    Pfefferkorn, F. E.
    MANUFACTURING LETTERS, 2022, 33 : 670 - 677
  • [33] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue P.J.
    Beste L.-H.
    Richter B.
    Agrawal A.
    Klingbeil K.
    Thoma D.
    Radel T.
    Pfefferkorn F.E.
    Manufacturing Letters, 2022, 33 : 670 - 677
  • [34] Effect of chemically accelerated vibratory finishing on the corrosion behavior of Laser Powder Bed Fusion 316L stainless steel
    Prochaska, Stephanie
    Hildreth, Owen
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 305
  • [35] Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Li, Hua
    Hardacre, David
    JOM, 2018, 70 (03) : 390 - 395
  • [36] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue, P. J.
    Beste, L. H.
    Richter, B.
    Agrawal, A.
    Klingbeil, K.
    Thoma, D.
    Radel, T.
    Pfefferkorn, F. E.
    MANUFACTURING LETTERS, 2022, 33 : 670 - 677
  • [37] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [38] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [39] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)
  • [40] Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel
    Biswas, Prosenjit
    Ma, Ji
    ADDITIVE MANUFACTURING, 2024, 80