Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery

被引:32
|
作者
Ma, Yanan [1 ]
Tang, Shaoru [1 ]
Wang, Haimeng [1 ]
Liang, Yuxuan [1 ]
Zhang, Dingyu [1 ]
Xu, Xiaoyang [1 ]
Wang, Qian [1 ]
Li, Wei [1 ]
机构
[1] Capital Normal Univ, Dept Chem, Beijing 100048, Peoples R China
来源
基金
北京市自然科学基金;
关键词
Electrospun nanofibers membranes; Zeolite imidazole framework; Zinc -air battery; ORR; OER bifunction; Dual single -atomic sites catalysts; HYDROGEN EVOLUTION; REDUCTION REACTION; POROUS CARBON; NANOPARTICLES; CATALYST; HYBRID; CO;
D O I
10.1016/j.jechem.2023.03.054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The recharged zinc-air battery (ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices. Fabricating the efficient bifunctional oxygen catalyst using a con-venient strategy is vitally important for the rechargeable ZAB. In this study, the bimetallic ZIFs-containing electrospun (ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process, which was expected to be a bifunctional electrocata-lyst for ZABs. Owing to the formed dual single-atomic sites of Co-N4 and Zn-N4, the obtained ES-Co/Zn-CNZIF exhibited the preferable performance toward oxygen reduction reaction (ORR) with E1/2 of 0.857 V and JL of 5.52 mA cm-2, which were more than Pt/C. Meanwhile, it exhibited a marked oxygen evolution reaction (OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles. Furthermore, the ZAB based on the ES-Co/Zn-CNZIF carbon nanofibers membranes delivered peak power density of 215 mW cm-2, specific capacity of 802.6 mA h g-1, and exceptional cycling stability, far larger than Pt/C+RuO2-based ZABs. A solid-state ZAB based on ES-Co/Zn-CNZIF showed better flexibility and sta-bility with different bending angles.& COPY; 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [41] N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries
    Ding, Jieting
    Wang, Peng
    Ji, Shan
    Wang, Hui
    Linkov, Vladimir
    Wang, Rongfang
    ELECTROCHIMICA ACTA, 2019, 296 : 653 - 661
  • [42] Interface Engineering of CoO/N-Doped Carbon Nanomaterials as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Sun, Qiming
    Zhao, Yiwei
    Yu, Xiaodan
    Zhang, Chao
    Xing, Shuangxi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [43] High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery
    Tanmathusorachai, Wuttichai
    Aulia, Sofiannisa
    Rinawati, Mia
    Chang, Ling-Yu
    Chang, Chia-Yu
    Huang, Wei-Hsiang
    Lin, Ming-Hsien
    Su, Wei-Nien
    Yuliarto, Brian
    Yeh, Min-Hsin
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (45) : 62022 - 62032
  • [44] FeNi coordination polymer based highly efficient and durable bifunction oxygen electrocatalyst for rechargeable zinc-air battery
    Zhang, Mingjian
    Hu, XiMin
    Xin, Yu
    Wang, Likai
    Zhou, Zhen
    Yang, Lu
    Jiang, Jianzhuang
    Zhang, Daopeng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 308
  • [45] Fe doped Mo-Ni supramolecular coordination polymer based bifunctional oxygen electrocatalyst with high efficiency and duration for rechargeable zinc-air battery
    Zhang, Mingjian
    Hu, Ximin
    Xin, Yu
    Song, Nuan
    Wang, Likai
    Zhou, Zhen
    Yang, Lu
    Hao, Hongguo
    Jiang, Jianzhuang
    Zhang, Daopeng
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 130 : 234 - 242
  • [46] Co/Ce-MOF-Derived Oxygen Electrode Bifunctional Catalyst for Rechargeable Zinc-Air Batteries
    Wu, Kang
    Wang, Daomiao
    Fu, Qiming
    Xu, Tao
    Xiong, Qiang
    Peera, Shaik Gouse
    Liu, Chao
    INORGANIC CHEMISTRY, 2024, 63 (24) : 11135 - 11145
  • [47] FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery
    Wang, Zhe
    Ang, Jiaming
    Liu, Jian
    Ma, Xiu Yun Daphne
    Kong, Junhua
    Zhang, Youfang
    Yan, Tao
    Lu, Xuehong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
  • [48] Rechargeable Zinc-Air Batteries with Seawater Electrolyte andCranberry Bean Shell-Derived Carbon Electrocatalyst
    Mulyadewi, Anggraeni
    Mahbub, Muhammad Adib Abdillah
    Irmawati, Yuyun
    Balqis, Falihah
    Adios, Celfi Gustine
    Sumboja, Afriyanti
    ENERGY & FUELS, 2022, 36 (10) : 5475 - 5482
  • [49] Co/CoSe heterojunction as bifunctional oxygen electrocatalysts for rechargeable Zinc-Air batteries
    Zhang, Feng
    Lei, Yu
    Liu, Jiali
    Li, Guang
    Xie, Yangcheng
    Yi, Lingguang
    Wu, Tianjing
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2024, 620
  • [50] Anchoring Mn3O4 Nanoparticles on Oxygen Functionalized Carbon Nanotubes as Bifunctional Catalyst for Rechargeable Zinc-Air Battery
    Li, Laiquan
    Yang, Jun
    Yang, Hongbin
    Zhang, Liping
    Shao, Jinjun
    Huang, Wei
    Liu, Bin
    Dong, Xiaochen
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (03): : 963 - 969