Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery

被引:32
|
作者
Ma, Yanan [1 ]
Tang, Shaoru [1 ]
Wang, Haimeng [1 ]
Liang, Yuxuan [1 ]
Zhang, Dingyu [1 ]
Xu, Xiaoyang [1 ]
Wang, Qian [1 ]
Li, Wei [1 ]
机构
[1] Capital Normal Univ, Dept Chem, Beijing 100048, Peoples R China
来源
基金
北京市自然科学基金;
关键词
Electrospun nanofibers membranes; Zeolite imidazole framework; Zinc -air battery; ORR; OER bifunction; Dual single -atomic sites catalysts; HYDROGEN EVOLUTION; REDUCTION REACTION; POROUS CARBON; NANOPARTICLES; CATALYST; HYBRID; CO;
D O I
10.1016/j.jechem.2023.03.054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The recharged zinc-air battery (ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices. Fabricating the efficient bifunctional oxygen catalyst using a con-venient strategy is vitally important for the rechargeable ZAB. In this study, the bimetallic ZIFs-containing electrospun (ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process, which was expected to be a bifunctional electrocata-lyst for ZABs. Owing to the formed dual single-atomic sites of Co-N4 and Zn-N4, the obtained ES-Co/Zn-CNZIF exhibited the preferable performance toward oxygen reduction reaction (ORR) with E1/2 of 0.857 V and JL of 5.52 mA cm-2, which were more than Pt/C. Meanwhile, it exhibited a marked oxygen evolution reaction (OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles. Furthermore, the ZAB based on the ES-Co/Zn-CNZIF carbon nanofibers membranes delivered peak power density of 215 mW cm-2, specific capacity of 802.6 mA h g-1, and exceptional cycling stability, far larger than Pt/C+RuO2-based ZABs. A solid-state ZAB based on ES-Co/Zn-CNZIF showed better flexibility and sta-bility with different bending angles.& COPY; 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [21] Tuning active sites for highly efficient bifunctional oxygen electrocatalysts of rechargeable zinc-air battery
    Li, Xuhui
    Liu, Yanpin
    Xu, Haifei
    Zhou, Yangfan
    Chen, Xinbing
    An, Zhongwei
    Chen, Yu
    Chen, Pei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 640 : 549 - 557
  • [22] Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Li, Yun-Wu
    Zhang, Wen-Jie
    Li, Jing
    Ma, Hui-Yan
    Du, Hong-Mei
    Li, Da-Cheng
    Wang, Su-Na
    Zhao, Jin-Sheng
    Dou, Jian-Min
    Xu, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 44710 - 44719
  • [23] FeCoNi ternary alloy embedded mesoporous carbon nanofiber: An efficient oxygen evolution catalyst for rechargeable zinc-air battery
    Li, Congling
    Zhang, Zhijie
    Wu, Mengchen
    Liu, Rui
    MATERIALS LETTERS, 2019, 238 : 138 - 142
  • [24] Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery
    Chen, Chang
    Cheng, Dan
    Liu, Shoujie
    Wang, Zhe
    Hu, Mingzhen
    Zhou, Kebin
    ENERGY STORAGE MATERIALS, 2020, 24 (24) : 402 - 411
  • [25] Encapsulating CoNi nanoparticles into nitrogen-doped carbon nanotube arrays as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
    Shen, Yu
    Yan, Feng
    Yang, Huan
    Xu, Jia
    Geng, Bo
    Liu, Lina
    Zhu, Chunling
    Zhang, Xitian
    Chen, Yujin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 842 - 852
  • [26] Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
    Meng, Lu
    Zhan, Ling
    Jiang, Hongliang
    Zhu, Yihua
    Li, Chunzhong
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (20) : 5757 - 5762
  • [27] Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery
    Cai, Shichang
    Meng, Zihan
    Li, Gaojie
    An, Yu
    Cheng, Yapeng
    Kan, Erjun
    Ouyang, Bo
    Zhang, Haining
    Tang, Haolin
    NANO RESEARCH, 2023, 16 (04) : 5887 - 5893
  • [28] Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery
    Shichang Cai
    Zihan Meng
    Gaojie Li
    Yu An
    Yapeng Cheng
    Erjun Kan
    Bo Ouyang
    Haining Zhang
    Haolin Tang
    Nano Research, 2023, 16 : 5887 - 5893
  • [29] Oxygen Plasma-Activated NiFe Prussian Blue Analogues Interconnected N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst for a Rechargeable Zinc-Air Battery
    Aulia, Sofiannisa
    Lin, Yin-Chen
    Chang, Ling-Yu
    Wang, Yu-Xuan
    Lin, Ming-Hsien
    Ho, Kuo-Chuan
    Yeh, Min-Hsin
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) : 9801 - 9810
  • [30] Biomass-Derived Carbon-Coated FeCo Alloys as Highly Efficient Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Lin, Kangdi
    Chen, Meijie
    Zhou, Zihao
    Huang, Hongyun
    Zhang, Jinlian
    Peng, Shaomin
    Sun, Ming
    Yu, Lin
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (23): : 11172 - 11183