Gene Expression Machine Learning Models Classify Pediatric AML Subtypes with High Performance

被引:0
|
作者
Shah, Krish [1 ]
Ma, Jing [2 ]
Djekidel, Mohamed [1 ]
Song, Guangchun [2 ]
Umeda, Masayuki [2 ]
Fan, Yiping [1 ]
Wu, Gang [1 ]
Klco, Jeffery [2 ]
机构
[1] St Jude Childrens Res Hosp, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Pathol, 332 N Lauderdale St, Memphis, TN 38105 USA
关键词
D O I
10.1182/blood-2023-189450
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Linking gene expression to clinical outcomes in pediatric Crohn's disease using machine learning
    Chen, Kevin A.
    Nishiyama, Nina C.
    Ng, Meaghan M. Kennedy
    Shumway, Alexandria
    Joisa, Chinmaya U.
    Schaner, Matthew R.
    Lian, Grace
    Beasley, Caroline
    Zhu, Lee-Ching
    Bantumilli, Surekha
    Kapadia, Muneera R.
    Gomez, Shawn M.
    Furey, Terrence S.
    Sheikh, Shehzad Z.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [42] Linking gene expression to clinical outcomes in pediatric Crohn’s disease using machine learning
    Kevin A. Chen
    Nina C. Nishiyama
    Meaghan M. Kennedy Ng
    Alexandria Shumway
    Chinmaya U. Joisa
    Matthew R. Schaner
    Grace Lian
    Caroline Beasley
    Lee-Ching Zhu
    Surekha Bantumilli
    Muneera R. Kapadia
    Shawn M. Gomez
    Terrence S. Furey
    Shehzad Z. Sheikh
    Scientific Reports, 14
  • [43] Advanced Machine Learning Models for Large Scale Gene Expression Analysis in Cancer Classification: Deep Learning Versus Classical Models
    Zenbout, Imene
    Meshoul, Souham
    BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 210 - 221
  • [44] Learning from models: high-dimensional analyses on the performance of machine learning interatomic potentials
    Liu, Yunsheng
    Mo, Yifei
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [45] PERFORMANCE OF MACHINE LEARNING METHODS IN CLASSIFICATION MODELS WITH HIGH-DIMENSIONAL DATA
    Zekic-Susac, Marijana
    Pfeifer, Sanja
    Sarlija, Natasa
    SOR'13 PROCEEDINGS: THE 12TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2013, : 219 - 224
  • [46] Finding rule groups to classify high dimensional gene expression datasets
    An, Jiyuan
    Chen, Yi-Ping Phoebe
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2009, 33 (01) : 108 - 113
  • [47] Finding rule groups to classify high dimensional gene expression datasets
    An, Jiyuan
    Chen, Yi-Ping Phoebe
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 1196 - +
  • [48] Construction of Decision Trees Based on Gene Expression Omnibus Data to Classify Bladder Cancer and Its Subtypes
    Zhou, Jia-Quan
    Kang, Xin-Li
    Xu, Cong-Jie
    Liu, Shuan
    Wang, Yang
    MEDICAL SCIENCE MONITOR, 2021, 27
  • [49] Using Machine Learning Models To Classify User Performance In The Ruff Figural Fluency Test From Eye-Tracking Features
    Borys, Magdalena
    Plechawska-Wojcik, Malgorzata
    Krukow, Pawel
    Barakate, Sara
    Hachmoud, Karim
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC DEVICES AND PROCESSES IN ENVIRONMENT PROTECTION WITH SEMINAR APPLICATIONS OF SUPERCONDUCTORS (ELMECO & AOS), 2017,
  • [50] Machine Learning in Assessing the Performance of Hydrological Models
    Rozos, Evangelos
    Dimitriadis, Panayiotis
    Bellos, Vasilis
    HYDROLOGY, 2022, 9 (01)