Gene Expression Machine Learning Models Classify Pediatric AML Subtypes with High Performance

被引:0
|
作者
Shah, Krish [1 ]
Ma, Jing [2 ]
Djekidel, Mohamed [1 ]
Song, Guangchun [2 ]
Umeda, Masayuki [2 ]
Fan, Yiping [1 ]
Wu, Gang [1 ]
Klco, Jeffery [2 ]
机构
[1] St Jude Childrens Res Hosp, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Pathol, 332 N Lauderdale St, Memphis, TN 38105 USA
关键词
D O I
10.1182/blood-2023-189450
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Rosetta Machine Learning Models Accurately Classify Positional Effects of Thioamides on Proteolysis
    Giannakoulias, Sam
    Shringari, Sumant R.
    Liu, Chunxiao
    Phan, Hoang Anh T.
    Barrett, Taylor M.
    Ferrie, John J.
    Petersson, E. James
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (37): : 8032 - 8041
  • [32] Machine Learning for Generic Energy Models of High Performance Computing Resources
    Murana, Jonathan
    Navarrete, Carmen
    Nesmachnow, Sergio
    HIGH PERFORMANCE COMPUTING - ISC HIGH PERFORMANCE DIGITAL 2021 INTERNATIONAL WORKSHOPS, 2021, 12761 : 314 - 330
  • [33] Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
    Yones, Sara A.
    Annett, Alva
    Stoll, Patricia
    Diamanti, Klev
    Holmfeldt, Linda
    Barrenas, Carl Fredrik
    Meadows, Jennifer R. S.
    Komorowski, Jan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
    Sara A. Yones
    Alva Annett
    Patricia Stoll
    Klev Diamanti
    Linda Holmfeldt
    Carl Fredrik Barrenäs
    Jennifer R. S. Meadows
    Jan Komorowski
    Scientific Reports, 12
  • [35] Gene expression profile predicting prognosis in pediatric AML at diagnosis.
    Yagi, T
    Ichikawa, H
    Morimoto, A
    Hibi, S
    Sako, M
    Imashuku, S
    Ishii, E
    Mizutani, S
    Ohki, M
    BLOOD, 2002, 100 (11) : 744A - 744A
  • [36] Gene expression profiles of distinct AML subtypes in comparison to normal bone marrow.
    Kohlmann, A
    Dugas, M
    Schoch, C
    Schnittger, S
    Mergenthaler, S
    Kern, W
    Haferlach, T
    Hiddemann, W
    BLOOD, 2001, 98 (11) : 91A - 91A
  • [37] Usage of Machine Learning Techniques to Classify and Predict the Performance of Force Sensing Resistors
    Pena, Angela
    Alvarez, Edwin L.
    Ayala Valderrama, Diana M.
    Palacio, Carlos
    Bermudez, Yosmely
    Paredes-Madrid, Leonel
    SENSORS, 2024, 24 (20)
  • [38] Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
    Albaradei, Somayah
    Uludag, Mahmut
    Thafar, Maha A.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    FRONTIERS IN GENETICS, 2021, 12
  • [39] Improved prediction of gene expression through integrating cell signalling models with machine learning
    Al Taweraqi, Nada
    King, Ross D.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [40] Improved prediction of gene expression through integrating cell signalling models with machine learning
    Nada Al taweraqi
    Ross D. King
    BMC Bioinformatics, 23