CTACL:HYPERSPECTRAL IMAGE CHANGE DETECTION BASED ON ADAPTIVE CONTRASTIVE LEARNING

被引:1
|
作者
Tian, Shunli [1 ]
Zhang, Xiangrong [1 ]
Wang, Guanchun [1 ]
Han, Xiao [1 ]
Chen, Puhua [1 ]
Cheng, Xina [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; change detection; contrastive learning; transformer;
D O I
10.1109/IGARSS52108.2023.10282489
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral image change detection (HSI-CD) can accurately identify changing regions by capturing subtle spectral differences and has become a research hotspot in the field of remote sensing (RS). Convolutional neural networks (CNNs) have excellent local context modeling capabilities and have been proven to be powerful feature extractors in HSI-CD. However, due to its inherent network structure limitation, CNN cannot well mine and represent the sequential properties of spectral features, especially the medium and long-term dependencies. In contrast, transformer-based network architecture shows a strong ability to model long-distance dependencies, which can fully mine and extract global features, but exhibits weak performance in extracting local information. To this end, we propose HSI-CD network based on adaptive contrastive learning (CTACL). Specifically, we first propose a parallel network of CNNs and transformers to mine local and global temporal-spatial-spectral features of HSI, respectively. Second, we propose adaptive contrastive learning to pre-train the network to learn the latent features of a large amount of unlabeled data and better mine and utilize local and global information. Experimental results on the farmland dataset show that the proposed method performs well.
引用
收藏
页码:7340 / 7343
页数:4
相关论文
共 50 条
  • [21] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] SELF-SUPERVISED CONFIDENT LEARNING FOR HYPERSPECTRAL IMAGE CHANGE DETECTION
    Wu, Haonan
    Chen, Zhao
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [23] Mask-Enhanced Contrastive Learning for Hyperspectral Image Classification
    Cao, Xianghai
    Yu, Jiayu
    Xu, Ruijie
    Wei, Jiaxuan
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [24] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [25] Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification
    Luo, Haiyang
    Qiao, Xueyi
    Xu, Yongming
    Zhong, Shengwei
    Gong, Chen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 1
  • [26] Supervised Contrastive Learning-Based Unsupervised Domain Adaptation for Hyperspectral Image Classification
    Li, Zhaokui
    Xu, Qiang
    Ma, Li
    Fang, Zhuoqun
    Wang, Yan
    He, Wenqiang
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] Adversarial Domain Alignment With Contrastive Learning for Hyperspectral Image Classification
    Liu, Fang
    Gao, Wenfei
    Liu, Jia
    Tang, Xu
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Hyperspectral Image Change Detection Method Based on the Balanced Metric
    Liang, Xintao
    Li, Xinling
    Wang, Qingyan
    Qian, Jiadong
    Wang, Yujing
    SENSORS, 2025, 25 (04)
  • [29] HYPERSPECTRAL IMAGE CHANGE DETECTION BASED ON INTRINSIC IMAGE DECOMPOSITION FEATURE EXTRACTION
    Du, Kecheng
    Liu, Sicong
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [30] Adaptive graph contrastive learning for community detection
    Guo, Kun
    Lin, Jiaqi
    Zhuang, Qifeng
    Zeng, Ruolan
    Wang, Jingbin
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28768 - 28786