Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification

被引:1
|
作者
Luo, Haiyang [1 ,2 ]
Qiao, Xueyi [3 ]
Xu, Yongming [4 ]
Zhong, Shengwei [1 ,2 ]
Gong, Chen [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Social, Key Lab Intelligent Percept & Syst High Dimens Inf, Minist Educ,PCA Lab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Zhengzhou Tobacco Res Inst CNTC, Zhengzhou 450001, Peoples R China
[4] China Tobacco Henan Ind Co Ltd, Technol Ctr, Zhengzhou 450001, Peoples R China
基金
美国国家科学基金会;
关键词
Feature extraction; Hyperspectral imaging; Contrastive learning; Accuracy; Image classification; Indexes; Training; Contrastive learning (CL); hyperspectral image classification (HSIC); unsupervised domain adaptation (UDA);
D O I
10.1109/LGRS.2024.3425482
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Variations in atmosphere, lighting, and imaging systems result in diverse category distributions in hyperspectral imagery, impacting the accuracy of cross-domain hyperspectral image classification (HSIC). Unsupervised domain adaptation (UDA) aims to address this issue by learning a model that generalizes effectively across domains, leveraging labels only from source domain (SD). Most existing UDA methods focus on aligning distributions between domains without fully considering the valuable information within individual domains. To fill this gap, this letter proposes a domain-collaborative contrastive learning (DCCL) method. DCCL integrates a novel pseudo-labeling strategy with a cross-domain contrastive learning (CL) framework. Specifically, in the pseudo-labeling phase, the confident examples in target domain (TD) are collaboratively labeled according to the labeled examples in SD and the class centers in TD. Then, the CL phase simultaneously minimizes in-domain and cross-domain contrastive loss to promote the aggregation of examples from the same category in both domains. Experimental results demonstrate that the DCCL achieves the accuracy rates of 93.47% and 54.59% on Pavia and Indiana datasets, respectively, surpassing the performance of other state-of-the-art UDA methods. Our source code is available at https://github.com/Leap-luohaiyang/DCCL-2024.
引用
收藏
页码:1 / 1
页数:5
相关论文
共 50 条
  • [1] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Adversarial Domain Alignment With Contrastive Learning for Hyperspectral Image Classification
    Liu, Fang
    Gao, Wenfei
    Liu, Jia
    Tang, Xu
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Collaborative Contrastive Learning for Hyperspectral and LiDAR Classification
    Jia, Sen
    Zhou, Xi
    Jiang, Shuguo
    He, Ruyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Domain Fusion Contrastive Learning for Cross-Scene Hyperspectral Image Classification
    Qiu, Zhao
    Xu, Jie
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] Contrastive Learning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification
    Ning, Yujie
    Peng, Jiangtao
    Liu, Quanyong
    Huang, Yi
    Sun, Weiwei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Collaborative learning for hyperspectral image classification
    Pan, Chao
    Li, Jie
    Wang, Ying
    Gao, Xinbo
    NEUROCOMPUTING, 2018, 275 : 2512 - 2524
  • [7] Domain-Invariant Few-Shot Contrastive Learning for Hyperspectral Image Classification
    Chen, Wenchen
    Zhang, Yanmei
    Chu, Jianping
    Wang, Xingbo
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [8] Supervised Contrastive Learning-Based Unsupervised Domain Adaptation for Hyperspectral Image Classification
    Li, Zhaokui
    Xu, Qiang
    Ma, Li
    Fang, Zhuoqun
    Wang, Yan
    He, Wenqiang
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Contrastive Learning Based on Transformer for Hyperspectral Image Classification
    Hu, Xiang
    Li, Teng
    Zhou, Tong
    Liu, Yu
    Peng, Yuanxi
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [10] Vision Transformer With Contrastive Learning for Hyperspectral Image Classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20