Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Intelligent Atmospheric Correction Algorithm for Polarization Ocean Color Satellite Measurements Over the Open Ocean
    He, Xianqiang
    Pan, Tianfeng
    Bai, Yan
    Shanmugam, Palanisamy
    Wang, Difeng
    Li, Teng
    Gong, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 22
  • [42] Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO)
    Ibrahim, Amir
    Franz, Bryan
    Ahmad, Ziauddin
    Healy, Richard
    Knobelspiesse, Kirk
    Gao, Bo-Cai
    Proctor, Chris
    Zhai, Peng-Wang
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 60 - 75
  • [43] Atmospheric correction algorithms for ADEOS/OCTS ocean color data: Performance comparison based on ship and buoy measurements
    Fukushima, H
    Toratani, M
    Yamamiya, S
    Mitomi, Y
    REMOTE SENSING AND APPLICATIONS: EARTH, ATMOSPHERE AND OCEANS, 2000, 25 (05): : 1015 - 1024
  • [44] Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans
    Li, Hao
    He, Xiangqiang
    Bai, Yan
    Shanmugam, Palanisamy
    Park, Young-Je
    Liu, Jia
    Zhu, Qiankun
    Gong, Fang
    Wang, Difeng
    Huang, Haiqing
    REMOTE SENSING OF ENVIRONMENT, 2020, 249
  • [45] Atmospheric correction of ocean color imagery through thick layers of Saharan dust
    Moulin, C
    Gordon, HR
    Chomko, RM
    Banzon, VF
    Evans, RH
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (01) : 5 - 8
  • [46] Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space
    Gao, BC
    Montes, MJ
    Ahmad, Z
    Davis, CO
    APPLIED OPTICS, 2000, 39 (06) : 887 - 896
  • [47] Performance of POLYMER Atmospheric Correction of Ocean Color Imagery in the Presence of Absorbing Aerosols
    Zhang, Minwei
    Hu, Chuanmin
    Barnes, Brian B.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6666 - 6674
  • [48] Sensor performance requirements for atmospheric correction of satellite ocean color remote sensing
    Wang, Menghua
    Gordon, Howard R.
    OPTICS EXPRESS, 2018, 26 (06): : 7390 - 7403
  • [49] Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era
    Frouin, Robert J.
    Franz, Bryan A.
    Ibrahim, Amir
    Knobelspiesse, Kirk
    Ahmad, Ziauddin
    Cairns, Brian
    Chowdhary, Jacek
    Dierssen, Heidi M.
    Tan, Jing
    Dubovik, Oleg
    Huang, Xin
    Davis, Anthony B.
    Kalashnikova, Olga
    Thompson, David R.
    Remer, Lorraine A.
    Boss, Emmanuel
    Coddington, Odele
    Deschamps, Pierre-Yves
    Gao, Bo-Cai
    Gross, Lydwine
    Hasekamp, Otto
    Omar, Ali
    Pelletier, Bruno
    Ramon, Didier
    Steinmetz, Francois
    Zhai, Peng-Wang
    FRONTIERS IN EARTH SCIENCE, 2019, 7
  • [50] Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space
    Gao, Bo-Cai
    Montes, Marcos J.
    Ahmad, Ziauddin
    Davis, Curtiss O.
    Applied Optics, 2000, 39 (06):