Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Ocean color atmospheric correction method with multi-angles data in Case II waters
    Ke, Zhiwu
    Ma, Yong
    Wang, Hongyuan
    Wang, Hao
    2009 SYMPOSIUM ON PHOTONICS AND OPTOELECTRONICS (SOPO 2009), 2009, : 469 - +
  • [22] The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing
    Wang, Menghua
    Shi, Wei
    OPTICS EXPRESS, 2007, 15 (24): : 15722 - 15733
  • [23] Evolution of Ocean Color Atmospheric Correction: 1970-2005
    Gordon, Howard R.
    REMOTE SENSING, 2021, 13 (24)
  • [24] Progressive atmospheric correction of satellite ocean-color imagery
    Frouin, Robert
    Gross, Lydwine
    Pelletier, Bruno
    REMOTE SENSING OF THE MARINE ENVIRONMENT, 2006, 6406
  • [25] THE ATMOSPHERIC CORRECTION FOR SATELLITE INFRARED RADIOMETER DATA IN POLAR-REGIONS
    BAMBER, JL
    HARRIS, AR
    GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (19) : 2111 - 2114
  • [26] Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region
    Wang, Menghua
    Shi, Wei
    Jiang, Lide
    OPTICS EXPRESS, 2012, 20 (02): : 741 - 753
  • [27] Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters
    He, Xianqiang
    Bai, Yan
    Pan, Delu
    Tang, Junwu
    Wang, Difeng
    OPTICS EXPRESS, 2012, 20 (18): : 20754 - 20770
  • [28] Correction of atmospheric effect on ADEOS/OCTS ocean color data: Algorithm description and evaluation of its performance
    Fukushima H.
    Higurashi A.
    Mitomi Y.
    Nakajima T.
    Noguchi T.
    Tanaka T.
    Toratani M.
    Journal of Oceanography, 1998, 54 (5) : 417 - 430
  • [30] Atmospheric correction of satellite ocean color imagery: The black pixel assumption
    Siegel, David A.
    Wang, Menghua
    Maritorena, Stéphane
    Robinson, Wayne
    Applied Optics, 2000, 39 (21): : 3582 - 3591