Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Evaluation of ADEOS-II GLI ocean color atmospheric correction using SIMBADA handheld radiometer data
    Fukushima, Hajime
    Toratani, Mitsuhiro
    Murakami, Hiroshi
    Deschamps, Pierre-Yves
    Frouin, Robert
    Tanaka, Akihiko
    JOURNAL OF OCEANOGRAPHY, 2007, 63 (03) : 533 - 543
  • [2] Evaluation of ADEOS-II GLI ocean color atmospheric correction using SIMBADA handheld radiometer data
    Hajime Fukushima
    Mitsuhiro Toratani
    Hiroshi Murakami
    Pierre-Yves Deschamps
    Robert Frouin
    Akihiko Tanaka
    Journal of Oceanography, 2007, 63 : 533 - 543
  • [3] Algorithms for atmospheric correction for ocean color data
    Mukai, S
    Sano, I
    Masuda, K
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1896 - 1898
  • [4] New approach to atmospheric correction of satellite ocean color data
    Kopelevich, Oleg V.
    Sheberstov, Sergey V.
    Vazyulya, Svetlana V.
    Zolotov, Ilia G.
    Bailey, Sean W.
    CURRENT RESEARCH ON REMOTE SENSING, LASER PROBING, AND IMAGERY IN NATURAL WATERS, 2007, 6615
  • [5] Atmospheric correction of SeaWiFS ocean color data in the Southern Hemisphere
    Takashima, T
    Rathbone, C
    Clementson, L
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (2-3) : 241 - 259
  • [6] Atmospheric correction of satellite ocean color data in turbid coastal waters
    Ahn, Yu-Hwan
    Shanmugam, Palanisamy
    Ryu, Joo-Hyung
    REMOTE SENSING OF THE MARINE ENVIRONMENT, 2006, 6406
  • [7] Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East
    A. I. Aleksanin
    V. A. Kachur
    Izvestiya, Atmospheric and Oceanic Physics, 2017, 53 : 996 - 1006
  • [8] Atmospheric correction for ocean color data given by ADEOS/OCTS and POLDER
    Mukai, S
    Sano, I
    Okada, Y
    REMOTE SENSING AND APPLICATIONS: EARTH, ATMOSPHERE AND OCEANS, 2000, 25 (05): : 1025 - 1028
  • [9] Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East
    Aleksanin, A. I.
    Kachur, V. A.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2017, 53 (09) : 996 - 1006
  • [10] Atmospheric correction for satellite ocean color data in Upper Gulf of Thailand
    Toratani, M
    Fukushima, H
    Murakami, H
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1916 - 1919