Generalized fuzzy difference method for solving fuzzy initial value problem

被引:0
|
作者
Soroush, S. [1 ]
Allahviranloo, T. [1 ,2 ]
Azari, H. [3 ]
Rostamy-Malkhalifeh, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Istinye Univ, Res Ctr Performance & Prod Anal, Istanbul, Turkiye
[3] Shahid Beheshti Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 03期
关键词
Fuzzy differential equation; Generalized differentiability; Adams-Bashforth method; Fuzzy difference equations; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1007/s40314-024-02645-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are going to explain the fuzzy Adams-Bashforth methods for solving fuzzy differential equations focusing on the concept of g-differentiability. Considering the analysis of normal, convex, upper semicontinuous, compactly supported fuzzy sets in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>n$$\end{document} and also convergence of the methods, the general expression of solutions is obtained. Finally, we demonstrate the importance of our method with some illustrative examples. These examples are provided aiming to solve the fuzzy differential equations.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Fuzzy reproducing kernel space method for solving fuzzy boundary value problems
    N. Gholami
    T. Allahviranloo
    S. Abbasbandy
    N. Karamikabir
    Mathematical Sciences, 2019, 13 : 97 - 103
  • [42] Fuzzy reproducing kernel space method for solving fuzzy boundary value problems
    Gholami, N.
    Allahviranloo, T.
    Abbasbandy, S.
    Karamikabir, N.
    MATHEMATICAL SCIENCES, 2019, 13 (02) : 97 - 103
  • [43] SOLVING FUZZY LINEAR PROGRAMMING PROBLEM USING A FUZZY LOGARITHMIC BARRIER METHOD
    Gani, A. Nagoor
    Yogarani, R.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (04): : 583 - 595
  • [44] Solving First Order Fuzzy Initial Value Problem by Fourth Order Runge-Kutta Method Based on Different Means
    Abadi, Maryam Asghari Hemmat
    Cao, Bing Yuan
    FUZZY INFORMATION AND ENGINEERING AND DECISION, 2018, 646 : 356 - 369
  • [45] The fuzzy boundary value problem for differential equation of second order based on the difference method
    Wu, Q.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2001, 23 (03): : 40 - 43
  • [46] A multi-step method to solve bipolar-fuzzy initial value problem
    Ahmady, E.
    Ahmady, N.
    Allahviranloo, T.
    Shahriari, M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [47] A multi-step method to solve bipolar-fuzzy initial value problem
    E. Ahmady
    N. Ahmady
    T. Allahviranloo
    M. Shahriari
    Computational and Applied Mathematics, 2024, 43
  • [48] Numerical Solving of a Boundary Value Problem for Fuzzy Differential Equations
    Fatullayev, Afet Golayoglu
    Koroglu, Canan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 86 (01): : 39 - 52
  • [49] A method for solving linear difference equation in Gaussian fuzzy environments
    Mostafijur Rahaman
    Sankar Prasad Mondal
    Ebrahem A. Algehyne
    Amiya Biswas
    Shariful Alam
    Granular Computing, 2022, 7 : 63 - 76
  • [50] A method for solving linear difference equation in Gaussian fuzzy environments
    Rahaman, Mostafijur
    Mondal, Sankar Prasad
    Algehyne, Ebrahem A.
    Biswas, Amiya
    Alam, Shariful
    GRANULAR COMPUTING, 2022, 7 (01) : 63 - 76