Generalized fuzzy difference method for solving fuzzy initial value problem

被引:0
|
作者
Soroush, S. [1 ]
Allahviranloo, T. [1 ,2 ]
Azari, H. [3 ]
Rostamy-Malkhalifeh, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Istinye Univ, Res Ctr Performance & Prod Anal, Istanbul, Turkiye
[3] Shahid Beheshti Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 03期
关键词
Fuzzy differential equation; Generalized differentiability; Adams-Bashforth method; Fuzzy difference equations; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1007/s40314-024-02645-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are going to explain the fuzzy Adams-Bashforth methods for solving fuzzy differential equations focusing on the concept of g-differentiability. Considering the analysis of normal, convex, upper semicontinuous, compactly supported fuzzy sets in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>n$$\end{document} and also convergence of the methods, the general expression of solutions is obtained. Finally, we demonstrate the importance of our method with some illustrative examples. These examples are provided aiming to solve the fuzzy differential equations.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Fuzzy Method for Solving Fuzzy Fractional Differential Equations Based on the Generalized Fuzzy Taylor Expansion
    Allahviranloo, Tofigh
    Noeiaghdam, Zahra
    Noeiaghdam, Samad
    Nieto, Juan J.
    MATHEMATICS, 2020, 8 (12) : 1 - 24
  • [32] Modified fractional Euler method for solving Fuzzy Fractional Initial Value Problem (vol 18, pg 12, 2013)
    Mazandarani, Mehran
    Kamyad, Ali Vahidian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) : 276 - 277
  • [33] An efficient numerical method for solving m-polar fuzzy initial value problems
    Muhammad Akram
    Muhammad Saqib
    Shahida Bashir
    Tofigh Allahviranloo
    Computational and Applied Mathematics, 2022, 41
  • [34] An efficient numerical method for solving m-polar fuzzy initial value problems
    Akram, Muhammad
    Saqib, Muhammad
    Bashir, Shahida
    Allahviranloo, Tofigh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [35] Higher Order Fuzzy Initial Value Problem Through Taylor's Method
    Devi, S. Sindu
    Ganesan, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1243 - 1251
  • [36] Solving the periodic boundary value problem with the initial value problem method
    Li, WG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (01) : 259 - 270
  • [37] Numerical solution of bipolar fuzzy initial value problem
    Saqib, Muhammad
    Akram, Muhammad
    Bashir, Shahida
    Allahviranloo, Tofigh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (01) : 1309 - 1341
  • [38] Piecewise Approximation for Bipolar Fuzzy Initial Value Problem
    Ahmady, E.
    Ahmady, N.
    Allahviranloo, T.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2024, 20 (03) : 687 - 709
  • [39] Approaches to solving the problem of risk assessment with fuzzy initial information
    Primova, Holida
    Sotvoldiev, Dilshodbek
    Safarova, Lola
    2018 12TH INTERNATIONAL IEEE SCIENTIFIC AND TECHNICAL CONFERENCE ON DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2018,
  • [40] Solving a Fuzzy Multiobjective Linear Programming Problem Through the Value and the Ambiguity of Fuzzy Numbers
    Jimenez, Mariano
    Arenas, Mar
    Bilbao, Amelia
    Rodriguez, Ma Victoria
    MULTIOBJECTIVE PROGRAMMING AND GOAL PROGRAMMING: THEORETICAL RESULTS AND PRACTICAL APPLICATIONS, 2009, 618 : 187 - +