Generalized fuzzy difference method for solving fuzzy initial value problem

被引:0
|
作者
Soroush, S. [1 ]
Allahviranloo, T. [1 ,2 ]
Azari, H. [3 ]
Rostamy-Malkhalifeh, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Istinye Univ, Res Ctr Performance & Prod Anal, Istanbul, Turkiye
[3] Shahid Beheshti Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 03期
关键词
Fuzzy differential equation; Generalized differentiability; Adams-Bashforth method; Fuzzy difference equations; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1007/s40314-024-02645-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are going to explain the fuzzy Adams-Bashforth methods for solving fuzzy differential equations focusing on the concept of g-differentiability. Considering the analysis of normal, convex, upper semicontinuous, compactly supported fuzzy sets in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>n$$\end{document} and also convergence of the methods, the general expression of solutions is obtained. Finally, we demonstrate the importance of our method with some illustrative examples. These examples are provided aiming to solve the fuzzy differential equations.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Generalized fuzzy difference method for solving fuzzy initial value problem
    S. Soroush
    T. Allahviranloo
    H. Azari
    M. Rostamy-Malkhalifeh
    Computational and Applied Mathematics, 2024, 43
  • [2] Fuzzy Difference Equations: The Initial Value Problem
    Buckley, James J.
    Feuring, Thomas
    Hayashi, Yoichi
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2001, 5 (06) : 315 - 325
  • [3] EXPLICIT RUNGE KUTTA METHOD IN SOLVING FUZZY INITIAL VALUE PROBLEM
    Jeyaraj, T.
    Rajan, D.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (04): : 663 - 674
  • [4] Improved Predictor Corrector Method for solving fuzzy initial value problem
    Allahviranloo, T.
    Ahmady, N.
    Ahmady, E.
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 13 - +
  • [5] Solving interactive fuzzy initial value problem via fuzzy Laplace transform
    Salgado, Silvio Antonio Bueno
    Esmi, Estevao
    Sanchez, Daniel Eduardo
    de Barros, Laecio Carvalho
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [6] Solving interactive fuzzy initial value problem via fuzzy Laplace transform
    Silvio Antonio Bueno Salgado
    Estevão Esmi
    Daniel Eduardo Sánchez
    Laécio Carvalho de Barros
    Computational and Applied Mathematics, 2021, 40
  • [7] Modified fractional Euler method for solving Fuzzy Fractional Initial Value Problem
    Mazandarani, Mehran
    Kamyad, Ali Vahidian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) : 12 - 21
  • [8] Trapezoidal method for solving fuzzy initial value problems
    Yang, Cheng-Fu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 819 - 832
  • [9] Solving a Fuzzy Initial Value Problem of a Harmonic Oscillator Model
    Karim, M. A.
    Gunawan, A. Y.
    Apri, M.
    Sidarto, K. A.
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2016), 2017, 1825
  • [10] SOLVING THE FUZZY INITIAL VALUE PROBLEM WITH NEGATIVE COEFFICIENT BY USING FUZZY LAPLACE TRANSFORM
    Citil, Hulya Gultekin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 201 - 215