Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains

被引:13
|
作者
Krajni, Ziga [1 ,2 ]
Schmidt, Johannes [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
[2] Dept Phys, CQP, NYU, 726 Broadway, New York, NY 10003 USA
[3] Bonacci GmbH, Robert Koch Str 8, D-50937 Cologne, Germany
关键词
ASYMPTOTICS; EQUATION;
D O I
10.1103/PhysRevLett.132.017101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies have found that fluctuations of magnetization transfer in integrable spin chains violate the central limit property. Here, we revisit the problem of anomalous counting statistics in the Landau-Lifshitz field theory by specializing to two distinct anomalous regimes featuring a dynamical critical point. By performing optimized numerical simulations using an integrable space-time discretization, we extract the algebraic growth exponents of time-dependent cumulants which attain their threshold values. The distinctly non-Gaussian statistics of magnetization transfer in the easy-axis regime is found to converge toward the universal distribution of charged single-file systems. At the isotropic point, we infer a weakly non-Gaussian distribution, corroborating the view that superdiffusive spin transport in integrable spin chains does not belong to any known dynamical universality class.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Magnetization switching probability in the dynamical switching regime driven by spin-transfer torque
    Taniguchi, Tomohiro
    Isogami, Shinji
    Shiokawa, Yohei
    Ishitani, Yugo
    Komura, Eiji
    Sasaki, Tomoyuki
    Mitani, Seiji
    Hayashi, Masamitsu
    PHYSICAL REVIEW B, 2022, 106 (10)
  • [32] Spin Chains with Dynamical Lattice Supersymmetry
    Christian Hagendorf
    Journal of Statistical Physics, 2013, 150 : 609 - 657
  • [33] ORDERING AND CRITICALITY IN SPIN-1 CHAINS - REPLY
    SINGH, RRP
    GELFAND, MP
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 840 - 840
  • [34] ORDERING AND CRITICALITY IN SPIN-1 CHAINS - COMMENT
    AFFLECK, I
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 839 - 839
  • [35] Spin Chains with Dynamical Lattice Supersymmetry
    Hagendorf, Christian
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (04) : 609 - 657
  • [36] Probing criticality in quantum spin chains with neural networks
    Berezutskii, A.
    Beketov, M.
    Yudin, D.
    Zimboras, Z.
    Biamonte, J. D.
    JOURNAL OF PHYSICS-COMPLEXITY, 2020, 1 (03):
  • [37] Quantum Criticality in Open Quantum Spin Chains with Nonreciprocity
    Begg, Samuel E.
    Hanai, Ryo
    PHYSICAL REVIEW LETTERS, 2024, 132 (12)
  • [38] Direct observation of quantum criticality in Ising spin chains
    Zhang, Jingfu
    Cucchietti, Fernando M.
    Chandrashekar, C. M.
    Laforest, Martin
    Ryan, Colm A.
    Ditty, Michael
    Hubbard, Adam
    Gamble, John K.
    Laflamme, Raymond
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [39] INVARIANT MEASURES FOR INTEGRABLE SPIN CHAINS AND AN INTEGRABLE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Angelopoulos, Yannis
    Killip, Rowan
    Visan, Monica
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 135 - 163
  • [40] SPIN BEATS AND DYNAMICAL MAGNETIZATION IN QUANTUM STRUCTURES
    BAUMBERG, JJ
    AWSCHALOM, DD
    SAMARTH, N
    LUO, H
    FURDYNA, JK
    PHYSICAL REVIEW LETTERS, 1994, 72 (05) : 717 - 720