Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains

被引:13
|
作者
Krajni, Ziga [1 ,2 ]
Schmidt, Johannes [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
[2] Dept Phys, CQP, NYU, 726 Broadway, New York, NY 10003 USA
[3] Bonacci GmbH, Robert Koch Str 8, D-50937 Cologne, Germany
关键词
ASYMPTOTICS; EQUATION;
D O I
10.1103/PhysRevLett.132.017101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies have found that fluctuations of magnetization transfer in integrable spin chains violate the central limit property. Here, we revisit the problem of anomalous counting statistics in the Landau-Lifshitz field theory by specializing to two distinct anomalous regimes featuring a dynamical critical point. By performing optimized numerical simulations using an integrable space-time discretization, we extract the algebraic growth exponents of time-dependent cumulants which attain their threshold values. The distinctly non-Gaussian statistics of magnetization transfer in the easy-axis regime is found to converge toward the universal distribution of charged single-file systems. At the isotropic point, we infer a weakly non-Gaussian distribution, corroborating the view that superdiffusive spin transport in integrable spin chains does not belong to any known dynamical universality class.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum criticality among entangled spin chains
    Blanc, N.
    Trinh, J.
    Dong, L.
    Bai, X.
    Aczel, A. A.
    Mourigal, M.
    Balents, L.
    Siegrist, T.
    Ramirez, A. P.
    NATURE PHYSICS, 2018, 14 (03) : 273 - +
  • [22] Quantum Criticality of Hot Random Spin Chains
    Vasseur, R.
    Potter, A. C.
    Parameswaran, S. A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (21)
  • [23] Universality and quantum criticality in quasiperiodic spin chains
    Utkarsh Agrawal
    Sarang Gopalakrishnan
    Romain Vasseur
    Nature Communications, 11
  • [24] Quantum criticality among entangled spin chains
    N. Blanc
    J. Trinh
    L. Dong
    X. Bai
    A. A. Aczel
    M. Mourigal
    L. Balents
    T. Siegrist
    A. P. Ramirez
    Nature Physics, 2018, 14 : 273 - 276
  • [25] Global entanglement and quantum criticality in spin chains
    Wei, TC
    Das, D
    Mukhopadyay, S
    Vishveshwara, S
    Goldbart, PM
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [26] Universality and quantum criticality in quasiperiodic spin chains
    Agrawal, Utkarsh
    Gopalakrishnan, Sarang
    Vasseur, Romain
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Stability of Superdiffusion in Nearly Integrable Spin Chains
    De Nardis, Jacopo
    Gopalakrishnan, Sarang
    Vasseur, Romain
    Ware, Brayden
    PHYSICAL REVIEW LETTERS, 2021, 127 (05)
  • [28] New and old symmetries of integrable spin chains
    Nepomechie, RI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (32): : 3943 - 3952
  • [29] Nonequilibrium spin transport in integrable and nonintegrable classical spin chains
    Roy, Dipankar
    Dhar, Abhishek
    Spohn, Herbert
    Kulkarni, Manas
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [30] Quantum criticality and entropy transfer in spin chains and planes-Pyridine oxide copper salts
    Trinh, Jennifer
    Schaller, Daniel
    LaBarre, Patrick G.
    Schlenker, Kevin
    Miller, Joel S.
    Ramirez, Arthur P.
    AIP ADVANCES, 2019, 9 (12)