Cell-type memory in a single-cell eukaryote requires the continuous presence of a specific transcription regulator

被引:2
|
作者
Lee, Chien -Der [1 ]
Ziv, Naomi [1 ]
Johnson, Alexander D. [1 ]
机构
[1] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94158 USA
关键词
cell-type memory; transcriptional feedback loop; Candida albicans; degron; CANDIDA-ALBICANS; MASTER REGULATOR; DEGRON SYSTEM; FREQUENCY; PROTEINS; WOR1;
D O I
10.1073/pnas.2220568120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental question in biology is how a eukaryotic cell type can be stably main-tained through many rounds of DNA replication and cell division. In this paper, we investigate this question in a fungal species, Candida albicans, where two different cells types (white and opaque) arise from the same genome. Once formed, each cell type is stable for thousands of generations. Here, we investigate the mechanisms underlying opaque cell "memory." Using an auxin-mediated degradation system, we rapidly removed Wor1, the primary transcription activator of the opaque state and, using a variety of methods, determined how long cells can maintain the opaque state. Within approximately 1 h of Wor1 destruction, opaque cells irreversibly lose their memory and switch to the white cell state. This observation rules out several competing models for cell memory and demonstrates that the continuous presence of Wor1 is needed to maintain the opaque cell state-even across a single cell division cycle. We also provide evidence for a threshold concentration of Wor1 in opaque cells, below which opaque cells irreversibly switch to white cells. Finally, we provide a detailed description of the gene expression changes that occur during this switch in cell types.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] EnClaSC: a novel ensemble approach for accurate and robust cell-type classification of single-cell transcriptomes
    Chen, Xiaoyang
    Chen, Shengquan
    Jiang, Rui
    BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [32] scAnnotate: an automated cell-type annotation tool for single-cell RNA-sequencing data
    Ji, Xiangling
    Tsao, Danielle
    Bai, Kailun
    Tsao, Min
    Xing, Li
    Zhang, Xuekui
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [33] EnClaSC: a novel ensemble approach for accurate and robust cell-type classification of single-cell transcriptomes
    Xiaoyang Chen
    Shengquan Chen
    Rui Jiang
    BMC Bioinformatics, 21
  • [34] Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data
    Huang, Yixuan
    Zhang, Peng
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [35] Clinical, cell-type, and architectural characterization of AFX and PDS using single-cell and spatial transcriptomics
    Klein, J. C.
    Hosler, G.
    Hon, G.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S144 - S144
  • [36] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Zhang, Allen W.
    O'Flanagan, Ciara
    Chavez, Elizabeth A.
    Lim, Jamie L. P.
    Ceglia, Nicholas
    McPherson, Andrew
    Wiens, Matt
    Walters, Pascale
    Chan, Tim
    Hewitson, Brittany
    Lai, Daniel
    Mottok, Anja
    Sarkozy, Clementine
    Chong, Lauren
    Aoki, Tomohiro
    Wang, Xuehai
    Weng, Andrew P.
    McAlpine, Jessica N.
    Aparicio, Samuel
    Steidl, Christian
    Campbell, Kieran R.
    Shah, Sohrab P.
    NATURE METHODS, 2019, 16 (10) : 1007 - +
  • [37] Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
    Chen, Xi
    Wang, Yuan
    Cappuccio, Antonio
    Cheng, Wan-Sze
    Zamojski, Frederique Ruf
    Nair, Venugopalan D.
    Miller, Clare M.
    Rubenstein, Aliza B.
    Nudelman, German
    Tadych, Alicja
    Theesfeld, Chandra L.
    Vornholt, Alexandria
    George, Mary-Catherine
    Ruffin, Felicia
    Dagher, Michael
    Chawla, Daniel G.
    Soares-Schanoski, Alessandra
    Spurbeck, Rachel R.
    Ndhlovu, Lishomwa C.
    Sebra, Robert
    Kleinstein, Steven H.
    Letizia, Andrew G.
    Ramos, Irene
    Fowler Jr, Vance G.
    Woods, Christopher W.
    Zaslavsky, Elena
    Troyanskaya, Olga G.
    Sealfon, Stuart C.
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (07): : 644 - +
  • [38] MACA: marker-based automatic cell-type annotation for single-cell expression data
    Xu, Yang
    Baumgart, Simon J.
    Stegmann, Christian M.
    Hayat, Sikander
    BIOINFORMATICS, 2022, 38 (06) : 1756 - 1760
  • [39] scHumanNet: a single-cell network analysis platform for the study of cell-type specificity of disease genes
    Cha, Junha
    Yu, Jiwon
    Cho, Jae-Won
    Hemberg, Martin
    Lee, Insuk
    NUCLEIC ACIDS RESEARCH, 2023, 51 (02) : E8
  • [40] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Allen W. Zhang
    Ciara O’Flanagan
    Elizabeth A. Chavez
    Jamie L. P. Lim
    Nicholas Ceglia
    Andrew McPherson
    Matt Wiens
    Pascale Walters
    Tim Chan
    Brittany Hewitson
    Daniel Lai
    Anja Mottok
    Clementine Sarkozy
    Lauren Chong
    Tomohiro Aoki
    Xuehai Wang
    Andrew P Weng
    Jessica N. McAlpine
    Samuel Aparicio
    Christian Steidl
    Kieran R. Campbell
    Sohrab P. Shah
    Nature Methods, 2019, 16 : 1007 - 1015