Unconditional energy stability and temporal convergence of first-order numerical scheme for the square phase-field crystal model

被引:1
|
作者
Zhao, Guomei [1 ]
Hu, Shuaifei [2 ]
Zhu, Peicheng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Dept Math & Phys, Wenzhou 325035, Peoples R China
关键词
Square phase-field crystal model; Energy stability; Euler scheme; Temporal convergence; Error estimates; FINITE-DIFFERENCE SCHEME; STABLE SCHEMES; 2ND-ORDER;
D O I
10.1016/j.camwa.2023.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a sixth-order nonlinear parabolic problem of the square phase-field crystal model. We first demonstrate the time-discrete backward Euler scheme with mass conservation and energy stability. Then, we prove the unconditionally optimal error estimates for the time-discrete backward Euler scheme. In the end, we present 2D and 3D numerical simulations to confirm the theoretical results.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 50 条