Unconditional energy stability and temporal convergence of first-order numerical scheme for the square phase-field crystal model

被引:1
|
作者
Zhao, Guomei [1 ]
Hu, Shuaifei [2 ]
Zhu, Peicheng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Dept Math & Phys, Wenzhou 325035, Peoples R China
关键词
Square phase-field crystal model; Energy stability; Euler scheme; Temporal convergence; Error estimates; FINITE-DIFFERENCE SCHEME; STABLE SCHEMES; 2ND-ORDER;
D O I
10.1016/j.camwa.2023.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a sixth-order nonlinear parabolic problem of the square phase-field crystal model. We first demonstrate the time-discrete backward Euler scheme with mass conservation and energy stability. Then, we prove the unconditionally optimal error estimates for the time-discrete backward Euler scheme. In the end, we present 2D and 3D numerical simulations to confirm the theoretical results.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 50 条
  • [31] ON ENERGY DISSIPATION THEORY AND NUMERICAL STABILITY FOR TIME-FRACTIONAL PHASE-FIELD EQUATIONS
    Tang, Tao
    Yu, Haijun
    Zhou, Tao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : A3757 - A3778
  • [32] Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
    Guillen-Gonzalez, F.
    Tierra, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 354 : 67 - 85
  • [33] Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model
    Salvalaglio, Marco
    Backofen, Rainer
    Voigt, Axel
    Elder, Ken R.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [34] NUMERICAL APPROXIMATIONS FOR A SMECTIC-A LIQUID CRYSTAL FLOW MODEL: FIRST-ORDER, LINEAR, DECOUPLED AND ENERGY STABLE SCHEMES
    Huang, Qiumei
    Yang, Xiaofeng
    He, Xiaoming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2177 - 2192
  • [35] Destruction of first-order phase transition in a random-field Ising model
    Crokidakis, Nuno
    Nobre, Fernando D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (14)
  • [36] Topological signature of first-order phase transitions in a mean-field model
    Angelani, L
    Casetti, L
    Pettini, M
    Ruocco, G
    Zamponi, F
    EUROPHYSICS LETTERS, 2003, 62 (06): : 775 - 781
  • [37] Convergence and stability analysis of energy stable and bound-preserving numerical schemes for binary fluid-surfactant phase-field equations
    Duan, Jiayi
    Li, Xiao
    Qiao, Zhonghua
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [38] An efficient and fast adaptive numerical method for a novel phase-field model of crystal growth
    Ham, Seokjun
    Li, Yibao
    Kwak, Soobin
    Jeong, Darae
    Kim, Junseok
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [39] An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation
    Cheng, Kelong
    Wang, Cheng
    Wise, Steven M.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) : 1335 - 1364
  • [40] CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION
    Baskaran, A.
    Lowengrub, J. S.
    Wang, C.
    Wise, S. M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) : 2851 - 2873