Invertible Kernel PCA With Random Fourier Features

被引:6
|
作者
Gedon, Daniel [1 ]
Ribeiro, Antonio H. [1 ]
Wahlstrom, Niklas [1 ]
Schon, Thomas B. [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala 75105, Sweden
基金
瑞典研究理事会;
关键词
Principal component analysis; Kernel; Image reconstruction; Dimensionality reduction; Noise reduction; Electrocardiography; Toy manufacturing industry; Denoising; ECG; Index Terms; kernel PCA; pre-image; random Fourier features; reconstruction;
D O I
10.1109/LSP.2023.3275499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Kernel principal component analysis (kPCA) is a widely studied method to construct a low-dimensional data representation after a nonlinear transformation. The prevailing method to reconstruct the original input signal from kPCA-an important task for denoising-requires us to solve a supervised learning problem. In this paper, we present an alternative method where the reconstruction follows naturally from the compression step. We first approximate the kernel with random Fourier features. Then, we exploit the fact that the nonlinear transformation is invertible in a certain subdomain. Hence, the name invertible kernel PCA (ikPCA). We experiment with different data modalities and show that ikPCA performs similarly to kPCA with supervised reconstruction on denoising tasks, making it a strong alternative.
引用
收藏
页码:563 / 567
页数:5
相关论文
共 50 条
  • [31] Palmprint Recognition Using Kernel PCA of Gabor Features
    Ekinci, Murat
    Aykut, Murat
    23RD INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2008, : 106 - +
  • [32] A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent*
    Liao, Zhenyu
    Couillet, Romain
    Mahoney, Michael W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (12):
  • [33] MFCC features with kernel PCA for speaker verification system
    Al-Jabar, Raml
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2014, 1 (06): : 37 - 44
  • [34] Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices
    Bonami, Aline
    Karoui, Abderrazek
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (02)
  • [35] Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices
    Aline Bonami
    Abderrazek Karoui
    Journal of Fourier Analysis and Applications, 2020, 26
  • [36] Kernel MSER-DFE Based Post-Distorter for VLC Using Random Fourier Features
    Jain, Sandesh
    Mitra, Rangeet
    Bhatia, Vimal
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 16241 - 16246
  • [37] Quantization Algorithms for Random Fourier Features
    Li, Xiaoyun
    Li, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Error Estimation for Random Fourier Features
    Yao, Junwen
    Erichson, N. Benjamin
    Lopes, Miles E.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [39] Random Fourier Features based SLAM
    Kapushev, Yermek
    Kishkun, Anastasia
    Ferrer, Gonzalo
    Burnaev, Evgeny
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6597 - 6602
  • [40] Random fourier features for asymmetric kernels
    He, Mingzhen
    He, Fan
    Liu, Fanghui
    Huang, Xiaolin
    MACHINE LEARNING, 2024, 113 (11-12) : 8459 - 8485