Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices

被引:0
|
作者
Aline Bonami
Abderrazek Karoui
机构
[1] Institut Denis-Poisson,Department of Mathematics, Faculty of Sciences of Bizerte
[2] Université d’Orléans,undefined
[3] Collégium Sciences et Techniques,undefined
[4] University of Carthage,undefined
来源
Journal of Fourier Analysis and Applications | 2020年 / 26卷
关键词
Eigenvalues and singular values; Kernel random matrices; Random discretization; Finite Fourier transform; Sinc kernel operator; Number of degrees of freedom; Primary 42A38; 15B52; Secondary 60F10; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is centred on the spectral study of a random Fourier matrix, that is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix A with (j, k) entries given by exp(2iπmYjZk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (2i\pi m Y_j Z_k)$$\end{document}, where Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document} are two i.i.d sequences of random variables and 1≤m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le n$$\end{document} is a real number. When the Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document} are uniformly distributed on a bounded symmetric interval, this may be seen as a random discretization of the finite Fourier transform, whose spectrum has been extensively studied in relation with band-limited functions. Moreover, this particular case of random finite Fourier matrix has been proposed in wireless telecommunication in order to approach the singular values of some channel fading matrices. We first compare in the ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-norm, the spectrum of the matrix A∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*A$$\end{document} with the spectrum of its associated integral operator. We show that the classical methods of concentration inequalities for kernel random matrices are well adapted for the spectral analysis of random Fourier matrices. We then concentrate on uniform distributions for the laws of Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document}’s and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document}’s, for which the integral operator is the well-known Sinc-kernel operator with parameter m. We translate to random Fourier matrices the knowledge that we have on the spectrum of this operator. In particular, we study some asymptotic and non-asymptotic behaviours of the set of the eigenvalues of A∗A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*A.$$\end{document} This study is done in the spirit of recent work on the Sinc-kernel integral operator. As applications, we give fairly good approximations of the number of degrees of freedom, as well as an estimate of the capacity of a MIMO wireless communication network approximation model. Finally, we provide the reader with some numerical examples that illustrate the theoretical results of this paper.
引用
收藏
相关论文
共 50 条
  • [1] Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices
    Bonami, Aline
    Karoui, Abderrazek
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (02)
  • [2] Fast Kernel Density Estimation with Density Matrices and Random Fourier Features
    Gallego, Joseph A.
    Osorio, Juan F.
    Gonzalez, Fabio A.
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 160 - 172
  • [3] THE SPECTRUM OF KERNEL RANDOM MATRICES
    El Karoui, Noureddine
    ANNALS OF STATISTICS, 2010, 38 (01): : 1 - 50
  • [4] Random fractional Fourier transform
    Liu, Zhengjun
    Liu, Shutian
    OPTICS LETTERS, 2007, 32 (15) : 2088 - 2090
  • [5] A random process related to a random walk on upper triangular matrices over a finite field
    Hildebrand, Martin
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 77 - 80
  • [6] Finite Diagonal Random Matrices
    Arup Bose
    Sanchayan Sen
    Journal of Theoretical Probability, 2013, 26 : 819 - 835
  • [7] Finite Diagonal Random Matrices
    Bose, Arup
    Sen, Sanchayan
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) : 819 - 835
  • [8] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [9] Random orthogonal matrices and the Cayley transform
    Jauch, Michael
    Hoff, Peter D.
    Dunson, David B.
    BERNOULLI, 2020, 26 (02) : 1560 - 1586
  • [10] On random field discretization in stochastic finite elements
    Zeldin, BA
    Spanos, PD
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1998, 65 (02): : 320 - 327