Random Discretization of the Finite Fourier Transform and Related Kernel Random Matrices

被引:0
|
作者
Aline Bonami
Abderrazek Karoui
机构
[1] Institut Denis-Poisson,Department of Mathematics, Faculty of Sciences of Bizerte
[2] Université d’Orléans,undefined
[3] Collégium Sciences et Techniques,undefined
[4] University of Carthage,undefined
来源
Journal of Fourier Analysis and Applications | 2020年 / 26卷
关键词
Eigenvalues and singular values; Kernel random matrices; Random discretization; Finite Fourier transform; Sinc kernel operator; Number of degrees of freedom; Primary 42A38; 15B52; Secondary 60F10; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is centred on the spectral study of a random Fourier matrix, that is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix A with (j, k) entries given by exp(2iπmYjZk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (2i\pi m Y_j Z_k)$$\end{document}, where Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document} are two i.i.d sequences of random variables and 1≤m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le n$$\end{document} is a real number. When the Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document} are uniformly distributed on a bounded symmetric interval, this may be seen as a random discretization of the finite Fourier transform, whose spectrum has been extensively studied in relation with band-limited functions. Moreover, this particular case of random finite Fourier matrix has been proposed in wireless telecommunication in order to approach the singular values of some channel fading matrices. We first compare in the ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-norm, the spectrum of the matrix A∗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*A$$\end{document} with the spectrum of its associated integral operator. We show that the classical methods of concentration inequalities for kernel random matrices are well adapted for the spectral analysis of random Fourier matrices. We then concentrate on uniform distributions for the laws of Yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document}’s and Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_k$$\end{document}’s, for which the integral operator is the well-known Sinc-kernel operator with parameter m. We translate to random Fourier matrices the knowledge that we have on the spectrum of this operator. In particular, we study some asymptotic and non-asymptotic behaviours of the set of the eigenvalues of A∗A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^*A.$$\end{document} This study is done in the spirit of recent work on the Sinc-kernel integral operator. As applications, we give fairly good approximations of the number of degrees of freedom, as well as an estimate of the capacity of a MIMO wireless communication network approximation model. Finally, we provide the reader with some numerical examples that illustrate the theoretical results of this paper.
引用
收藏
相关论文
共 50 条
  • [21] Random Fourier Feature Kernel Recursive Least Squares
    Qin, Zhengda
    Chen, Badong
    Zheng, Nanning
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2881 - 2886
  • [22] Structure-Aware Random Fourier Kernel for Graphs
    Fang, Jinyuan
    Zhang, Qiang
    Meng, Zaiqiao
    Liang, Shangsong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [23] Efficient Kernel Clustering Using Random Fourier Features
    Chitta, Radha
    Jin, Rong
    Jain, Anil K.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 161 - 170
  • [24] Random Fourier Approximation of the Kernel Function in Programmable Networks
    Guo, Wei
    He, Yue
    Chen, Hexiong
    Hang, Feilu
    Zhang, Jun
    Shorman, Samer
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 8 (01) : 1831 - 1840
  • [25] Random normal matrices, Bergman kernel and projective embeddings
    Klevtsov, Semyon
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [26] THE SPECTRUM OF RANDOM INNER-PRODUCT KERNEL MATRICES
    Cheng, Xiuyuan
    Singer, Amit
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2013, 2 (04)
  • [27] Random normal matrices, Bergman kernel and projective embeddings
    Semyon Klevtsov
    Journal of High Energy Physics, 2014
  • [28] Spectral distribution of large generalized random kernel matrices
    Zeng, Xingyuan
    STATISTICS & PROBABILITY LETTERS, 2019, 152 : 100 - 110
  • [29] Rectangular random matrices, related convolution
    Benaych-Georges, Florent
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) : 471 - 515
  • [30] Rectangular random matrices, related convolution
    Florent Benaych-Georges
    Probability Theory and Related Fields, 2009, 144 : 471 - 515