Local well-posedness to the thermal boundary layer equations in Sobolev space

被引:0
|
作者
Zou, Yonghui [1 ]
Xu, Xin [1 ]
Gao, An [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Linyi Sr Sch Finance & Econ, Linyi 276000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
thermal boundary layer equations; Oleinik's monotonicity condition; local well-posedness; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATION; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; ILL-POSEDNESS; HALF-SPACE; MONOTONICITY; STABILITY; BLOWUP;
D O I
10.3934/math.2023503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.
引用
收藏
页码:9933 / 9964
页数:32
相关论文
共 50 条