Local well-posedness to the thermal boundary layer equations in Sobolev space

被引:0
|
作者
Zou, Yonghui [1 ]
Xu, Xin [1 ]
Gao, An [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Linyi Sr Sch Finance & Econ, Linyi 276000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
thermal boundary layer equations; Oleinik's monotonicity condition; local well-posedness; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATION; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; ILL-POSEDNESS; HALF-SPACE; MONOTONICITY; STABILITY; BLOWUP;
D O I
10.3934/math.2023503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the local well-posedness of the thermal boundary layer equations for the two-dimensional incompressible heat conducting flow with nonslip boundary condition for the velocity and Neumann boundary condition for the temperature. Under Oleinik's monotonicity assumption, we establish the local-in-time existence and uniqueness of solutions in Sobolev space for the boundary layer equations by a new weighted energy method developed by Masmoudi and Wong.
引用
收藏
页码:9933 / 9964
页数:32
相关论文
共 50 条
  • [31] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    Bondar, L. N.
    Demidenko, G. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (05) : 1076 - 1090
  • [32] Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type
    Caso, Loredana
    D'Ambrosio, Roberta
    Transirico, Maria
    COLLECTANEA MATHEMATICA, 2016, 67 (03) : 539 - 554
  • [33] Well-posedness and Blowup of the Geophysical Boundary Layer Problem
    Xiang Wang
    Ya-Guang Wang
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [34] Well-posedness and Blowup of the Geophysical Boundary Layer Problem
    Wang, Xiang
    Wang, Ya-Guang
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [35] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    L. N. Bondar
    G. V. Demidenko
    Siberian Mathematical Journal, 2023, 64 : 1076 - 1090
  • [36] Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces
    Khai D.Q.
    Acta Mathematica Vietnamica, 2017, 42 (3) : 431 - 443
  • [37] GLOBAL WELL-POSEDNESS FOR FRACTIONAL SOBOLEV-GALPERN TYPE EQUATIONS
    Huy Tuan Nguyen
    Nguyen Anh Tuan
    Yang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06) : 2637 - 2665
  • [38] Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type
    Loredana Caso
    Roberta D’Ambrosio
    Maria Transirico
    Collectanea Mathematica, 2016, 67 : 539 - 554
  • [39] Well-posedness and local smoothing of solutions of Schrodinger, equations
    Ionescu, AD
    Kenig, CE
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (2-3) : 193 - 205
  • [40] Local Well-Posedness of Strong Solutions for the Nonhomogeneous MHD Equations with a Slip Boundary Conditions
    Hongmin Li
    Yuelong Xiao
    Acta Mathematica Scientia, 2020, 40 : 442 - 456