Treatment Detection and Movement Disorder Society-Unified Parkinson's Disease Rating Scale, Part III Estimation Using Finger Tapping Tasks

被引:3
|
作者
ZhuParris, Ahnjili [1 ,2 ,3 ]
Thijssen, Eva [1 ,2 ]
Elzinga, Willem O. O. [1 ]
Makai-Boloni, Soma [1 ,2 ]
Kraaij, Wessel [3 ]
Groeneveld, Geert J. J. [1 ,2 ]
Doll, Robert J. J. [1 ]
机构
[1] Ctr Human Drug Res CHDR, Zernikedreef 8, NL-2333 CL Leiden, Netherlands
[2] Leiden Univ, Med Ctr LUMC, Leiden, Netherlands
[3] Leiden Inst Adv Comp Sci LIACS, Leiden, Netherlands
关键词
Parkinson's disease; finger tapping; Movement Disorder Society-Unified Parkinson's Disease Rating Scale; machine learning; classification; regression; FINE MOTOR; LEVODOPA; BRADYKINESIA; VALIDATION; FEATURES; LIMB;
D O I
10.1002/mds.29520
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The validation of objective and easy-to-implement biomarkers that can monitor the effects of fast-acting drugs among Parkinson's disease (PD) patients would benefit antiparkinsonian drug development. We developed composite biomarkers to detect levodopa/carbidopa effects and to estimate PD symptom severity. For this development, we trained machine learning algorithms to select the optimal combination of finger tapping task features to predict treatment effects and disease severity. Data were collected during a placebo-controlled, crossover study with 20 PD patients. The alternate index and middle finger tapping (IMFT), alternative index finger tapping (IFT), and thumb-index finger tapping (TIFT) tasks and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III were performed during treatment. We trained classification algorithms to select features consisting of the MDS-UPDRS III item scores; the individual IMFT, IFT, and TIFT; and all three tapping tasks collectively to classify treatment effects. Furthermore, we trained regression algorithms to estimate the MDS-UPDRS III total score using the tapping task features individually and collectively. The IFT composite biomarker had the best classification performance (83.50% accuracy, 93.95% precision) and outperformed the MDS-UPDRS III composite biomarker (75.75% accuracy, 73.93% precision). It also achieved the best performance when the MDS-UPDRS III total score was estimated (mean absolute error: 7.87, Pearson's correlation: 0.69). We demonstrated that the IFT composite biomarker outperformed the combined tapping tasks and the MDS-UPDRS III composite biomarkers in detecting treatment effects. This provides evidence for adopting the IFT composite biomarker for detecting antiparkinsonian treatment effect in clinical trials. & COPY; 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
引用
收藏
页码:1795 / 1805
页数:11
相关论文
共 50 条
  • [21] Official Japanese Version of the International Parkinson and Movement Disorder Society-Unified Parkinson's Disease Rating Scale: Validation Against the Original English Version
    Kashihara, Kenichi
    Kondo, Tomoyoshi
    Mizuno, Yoshikuni
    Kikuchi, Seiji
    Kuno, Sadako
    Hasegawa, Kazuko
    Hattori, Nobutaka
    Mochizuki, Hideki
    Mori, Hideo
    Murata, Miho
    Nomoto, Masahiro
    Takahashi, Ryosuke
    Takeda, Atsushi
    Tsuboi, Yoshio
    Ugawa, Yoshikazu
    Yamanmoto, Mitsutoshi
    Yokochi, Fusako
    Yoshii, Fumihito
    Stebbins, Glenn T.
    Tilley, Barbara C.
    Luo, Sheng
    Wang, Lu
    LaPelle, Nancy R.
    Goetz, Christopher G.
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2014, 1 (03): : 200 - 212
  • [22] Validation of the Italian version of the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale
    Angelo Antonini
    Giovanni Abbruzzese
    Luigi Ferini-Strambi
    Barbara Tilley
    Jing Huang
    Glenn T. Stebbins
    Christopher G. Goetz
    Paolo Barone
    Monica Bandettini di Poggio
    Giovanni Fabbrini
    Flavio Di Stasio
    Michele Tinazzi
    Tommaso Bovi
    Silvia Ramat
    Sara Meoni
    Gianni Pezzoli
    Margherita Canesi
    Paolo Martinelli
    Cesa Lorella Maria Scaglione
    Aroldo Rossi
    Nicola Tambasco
    Gabriella Santangelo
    Marina Picillo
    Letterio Morgante
    Francesca Morgante
    Rocco Quatrale
    MariaChiara Sensi
    Manuela Pilleri
    Roberta Biundo
    Giampietro Nordera
    Antonella Caria
    Claudio Pacchetti
    Roberta Zangaglia
    Leonardo Lopiano
    Maurizio Zibetti
    Mario Zappia
    Alessandra Nicoletti
    Aldo Quattrone
    Maria Salsone
    Gianni Cossu
    Daniela Murgia
    Alberto Albanese
    Francesca Del Sorbo
    Neurological Sciences, 2013, 34 : 683 - 687
  • [23] Validation Study of the Official Korean Version of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (vol 16, pg 633, 2020)
    Park, Jinse
    Koh, Seong-Beom
    Kwon, Kyum-Yil
    Kim, Sang Jin
    Kim, Jae Woo
    Kim, Joong-Seok
    Park, Kun-Woo
    Paik, Jong Sam
    Sohn, Young H.
    Ahn, Jin-Young
    Ahn, Tae-Beom
    Oh, Eungseok
    Youn, Jinyoung
    Lee, Ji-Young
    Lee, Phil Hyu
    Jang, Wooyoung
    Kim, Han-Joon
    Jeon, Beom Seok
    Chung, Sun Ju
    Cho, Jin Whan
    Cheon, Sang-Myung
    Kang, Suk Yun
    Park, Mee Young
    Park, Seongho
    Huh, Young Eun
    Kang, Seok Jae
    Kim, Hee-Tae
    Ahn, Tae-Beom
    JOURNAL OF CLINICAL NEUROLOGY, 2021, 17 (03): : 501 - 501
  • [24] Novel Approach to Movement Disorder Society-Unified Parkinson's Disease Rating Scale Monitoring in Clinical Trials: Longitudinal Item Response Theory Models
    Luo, Sheng
    Zou, Haotian
    Goetz, Christopher G.
    Choi, Dongrak
    Oakes, David
    Simuni, Tanya
    Stebbins, Glenn T.
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2021, 8 (07): : 1083 - 1091
  • [25] Turkish Standardization of Movement Disorders Society Unified Parkinson's Disease Rating Scale and Unified Dyskinesia Rating Scale
    Akbostanci, Muhittin C.
    Bayram, Ece
    Yilmaz, Volkan
    Rzayev, Sefer
    Ozkan, Serhat
    Tokcaer, Ayse Bora
    Saka, Esen
    Celik, Fatma N. Durmaz
    Barut, Banu Ozen
    Tufekcioglu, Zeynep
    Acarer, Ahmet
    Balaban, Hatice
    Erer, Sevda
    Dogu, Okan
    Kibaroglu, Seda
    Aydin, Nursel
    Hanagasi, Hasmet
    Elibol, Bulent
    Emre, Murat
    Stebbins, Glenn T.
    Goetz, Christopher G.
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2018, 5 (01): : 54 - 59
  • [26] Using Cognitive Pretesting in Scale Development for Parkinson's Disease: The Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Example
    Tilley, Barbara C.
    LaPelle, Nancy R.
    Goetz, Christopher G.
    Stebbins, Glenn T.
    JOURNAL OF PARKINSONS DISEASE, 2014, 4 (03) : 395 - 404
  • [27] How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: Comparison with the unified Parkinson's disease rating scale
    Stebbins, Glenn T.
    Goetz, Christopher G.
    Burn, David J.
    Jankovic, Joseph
    Khoo, Tien K.
    Tilley, Barbara C.
    MOVEMENT DISORDERS, 2013, 28 (05) : 668 - 670
  • [29] Validation of the Slovak version of the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS)
    Skorvanek, M.
    Kosutzka, Z.
    Valkovic, P.
    Saeedian, R. Ghorbani
    Gdovinova, Z.
    LaPelle, N.
    Huang, J.
    Tilley, B. C.
    Stebbins, G. T.
    Goetz, C. G.
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2013, 76 (04) : 463 - 468
  • [30] Resolving Missing Data from the Movement Disorder Society Unified Parkinson's Disease Rating Scale: Implications for Telemedicine
    Luo, Sheng
    Goetz, Christopher G.
    Choi, Dongrak
    Aggarwal, Sanket
    Mestre, Tiago A.
    Stebbins, Glenn T.
    MOVEMENT DISORDERS, 2022, 37 (08) : 1749 - 1755