Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach

被引:1
|
作者
Wang, Jianhua [1 ]
Wang, Haozhan [2 ]
机构
[1] South China Agr Univ, Coll Elect Engn, Coll Articial Intelligence, Guangzhou 510642, Peoples R China
[2] Natl Ctr Int Collaborat Res Precis Agr Aviat Pesti, Guangzhou 510642, Peoples R China
基金
中国国家自然科学基金;
关键词
Orchid species; transfer learning; classification; ResNet34; deep learning;
D O I
10.1142/S1469026823500311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Transfer Learning-Based Framework for Classification of Pest in Tomato Plants
    Pattnaik, Gayatri
    Shrivastava, Vimal K.
    Parvathi, K.
    APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (13) : 981 - 993
  • [22] Deep transfer learning-based hologram classification for molecular diagnostics
    Kim, Sung-Jin
    Wang, Chuangqi
    Zhao, Bing
    Im, Hyungsoon
    Min, Jouha
    Choi, Hee June
    Tadros, Joseph
    Choi, Nu Ri
    Castro, Cesar M.
    Weissleder, Ralph
    Lee, Hakho
    Lee, Kwon Moo
    SCIENTIFIC REPORTS, 2018, 8
  • [23] A Transfer Learning-Based Approach to Detect Cerebral Microbleeds
    Afzal, Sitara
    Khan, Imran Ullah
    Lee, Jong Weon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1903 - 1923
  • [24] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Patel, Usha
    Patel, Vibha
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 2461 - 2486
  • [25] A Transfer Learning-Based Approach for Lysine Propionylation Prediction
    Li, Ang
    Deng, Yingwei
    Tan, Yan
    Chen, Min
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [26] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Usha Patel
    Vibha Patel
    The Journal of Supercomputing, 2024, 80 : 2461 - 2486
  • [27] Transfer learning-based quantized deep learning models for nail melanoma classification
    Mujahid Hussain
    Makhmoor Fiza
    Aiman Khalil
    Asad Ali Siyal
    Fayaz Ali Dharejo
    Waheeduddin Hyder
    Antonella Guzzo
    Moez Krichen
    Giancarlo Fortino
    Neural Computing and Applications, 2023, 35 : 22163 - 22178
  • [28] Transfer Learning-Based Deep Learning Model for Corn Leaf Disease Classification
    An, Justin
    Zhang, Nian
    Mahmoud, Wagdy H.
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 163 - 173
  • [29] Transfer learning-based quantized deep learning models for nail melanoma classification
    Hussain, Mujahid
    Fiza, Makhmoor
    Khalil, Aiman
    Siyal, Asad Ali
    Dharejo, Fayaz Ali
    Hyder, Waheeduddin
    Guzzo, Antonella
    Krichen, Moez
    Fortino, Giancarlo
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (30): : 22163 - 22178
  • [30] Transfer Learning-based Hybrid Approach for Bayesian Network Structure Learning
    Jose, Sonu
    Louis, Sushil
    Dascalu, Sergiu
    Liu, Siming
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (07)