Active learning-based hyperspectral image classification: a reinforcement learning approach

被引:7
|
作者
Patel, Usha [1 ]
Patel, Vibha [2 ]
机构
[1] Nirma Univ, Inst Technol, CSE Dept, Ahmadabad, India
[2] Gujarat Technol Univ, Vishwakarma Govt Engn Coll, IT Dept, Ahmadabad, India
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 02期
关键词
Hyperspectral image classification; Active learning; Deep Q Network; Reinforcement learning;
D O I
10.1007/s11227-023-05568-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the last few years, deep neural networks have been successful in classifying hyperspectral images (HSIs). However, training deep neural networks needs a large number of labeled datasets. In HSIs, acquiring a large amount of labeled data is costly and time-consuming. Active learning (AL) is a technique for selecting a small subset of data for annotation so that the classifier can learn from the data with high accuracy. Most of the AL methods are designed based on some statistical approach. The efficacy of the statistical methods is limited, and their performance varies depending on the scenario. So, a reinforced pool-based deep active learning (RPDAL) approach is proposed to overcome limitations of statistical selection approaches. The reinforcement learning (RL)-based agent is designed and trained to select informative samples for annotation. The learned RL-based agent can transfer and choose samples for annotation on any other HSI dataset after being trained on one. Indian Pines (IP), Pavia University (PV), and Salinas Valley (SL) are three publicly available datasets used in the experiment. The proposed approach achieves 92.78%, 97.85%, and 97.94% accuracy using 400 labeled samples with IP, PV, and SL datasets, respectively. The labeled samples selected using the proposed approach achieve better classification performance than other AL techniques.
引用
收藏
页码:2461 / 2486
页数:26
相关论文
共 50 条
  • [1] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Usha Patel
    Vibha Patel
    The Journal of Supercomputing, 2024, 80 : 2461 - 2486
  • [2] Supervised Contrastive Learning-Based Classification for Hyperspectral Image
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    Ghamisi, Pedram
    REMOTE SENSING, 2022, 14 (21)
  • [3] Confident Learning-Based Domain Adaptation for Hyperspectral Image Classification
    Fang, Zhuoqun
    Yang, Yuexin
    Li, Zhaokui
    Li, Wei
    Chen, Yushi
    Ma, Li
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] An off-policy deep reinforcement learning-based active learning for crime scene investigation image classification
    Zhang, Yixin
    Liu, Yang
    Jiang, Guofan
    Yang, Yuchen
    Zhang, Jian
    Jing, Yang
    Roohallah, Alizadehsani
    Ryszard, Tadeusiewicz
    Pawel, Plawiak
    INFORMATION SCIENCES, 2025, 710
  • [5] ITERATIVE CLUSTERING BASED ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Lu, Ting
    Li, Shutao
    Benediktsson, Jon Atli
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3664 - 3667
  • [6] GABOR-BASED ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hu, Jie
    Liu, Chenying
    He, Lin
    Li, Jun
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2457 - 2460
  • [7] ACTIVE MANIFOLD LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Zhou
    Taskin, Gulsen
    Crawford, Melba M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2587 - 2590
  • [8] Active Deep Learning for Hyperspectral Image Classification With Uncertainty Learning
    Lei, Zhao
    Zeng, Yi
    Liu, Peng
    Su, Xiaohui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Bayesian Approach in a Learning-Based Hyperspectral Image Denoising Framework
    Aetesam, Hazique
    Maji, Suman Kumar
    Yahia, Hussein
    IEEE ACCESS, 2021, 9 : 169335 - 169347
  • [10] Information Leakage in Deep Learning-Based Hyperspectral Image Classification: A Survey
    Feng, Hao
    Wang, Yongcheng
    Li, Zheng
    Zhang, Ning
    Zhang, Yuxi
    Gao, Yunxiao
    REMOTE SENSING, 2023, 15 (15)