Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays

被引:49
|
作者
Nguyen, Minh-Thi [1 ]
Liu, Jin-Guo [1 ,2 ]
Wurtz, Jonathan [1 ]
Lukin, Mikhail D. [2 ]
Wang, Sheng-Tao [1 ]
Pichler, Hannes [3 ,4 ]
机构
[1] QuEra Comp Inc, 1284 Soldiers Field Rd, Boston, MA 02135 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.1103/PRXQuantum.4.010316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead in the number of qubits. We analyze several examples, including maximum-weighted independent set on graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the orig-inal problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the hardware geometry.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Atom Localization Using a Rydberg State
    Hamedi, H. R.
    Sahrai, M.
    Khoshsima, H.
    PHYSICS OF WAVE PHENOMENA, 2018, 26 (01) : 47 - 55
  • [42] EXACT QUANTUM-ELECTRODYNAMICS RESULTS FOR SCATTERING, EMISSION, AND ABSORPTION FROM A RYDBERG ATOM IN A CAVITY WITH ARBITRARY-Q
    AGARWAL, GS
    PURI, RR
    PHYSICAL REVIEW A, 1986, 33 (03): : 1757 - 1764
  • [43] A concise review of Rydberg atom based quantum computation and quantum simulation
    吴晓凌
    梁昕晖
    田曜齐
    杨帆
    陈丞
    刘永椿
    郑盟锟
    尤力
    Chinese Physics B, 2021, (02) : 13 - 34
  • [44] Entanglement in the quantum phases of an unfrustrated Rydberg atom array
    Matthew J. O’Rourke
    Garnet Kin-Lic Chan
    Nature Communications, 14
  • [45] Quantum dynamics of a fully blockaded Rydberg atom ensemble
    Wild, Dominik S.
    Dragoi, Sabina
    McElhanney, Corbin
    Wurtz, Jonathan
    Wang, Sheng-Tao
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [46] Atom Localization Using a Rydberg State
    H. R. Hamedi
    M. Sahrai
    H. Khoshsima
    Physics of Wave Phenomena, 2018, 26 : 47 - 55
  • [47] Entanglement in the quantum phases of an unfrustrated Rydberg atom array
    O'Rourke, Matthew J.
    Chan, Garnet Kin-Lic
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] Quantum Tomography of Rydberg Atom Graphs by Configurable Ancillas
    Kim, Kangheun
    Ahn, Jaewook
    PRX QUANTUM, 2023, 4 (02):
  • [49] A concise review of Rydberg atom based quantum computation and quantum simulation*
    Wu, Xiaoling
    Liang, Xinhui
    Tian, Yaoqi
    Yang, Fan
    Chen, Cheng
    Liu, Yong-Chun
    Tey, Meng Khoon
    You, Li
    CHINESE PHYSICS B, 2021, 30 (02)
  • [50] Unitary and Nonunitary Quantum Cellular Automata with Rydberg Arrays
    Wintermantel, T. M.
    Wang, Y.
    Lochead, G.
    Shevate, S.
    Brennen, G. K.
    Whitlock, S.
    PHYSICAL REVIEW LETTERS, 2020, 124 (07)