Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays

被引:49
|
作者
Nguyen, Minh-Thi [1 ]
Liu, Jin-Guo [1 ,2 ]
Wurtz, Jonathan [1 ]
Lukin, Mikhail D. [2 ]
Wang, Sheng-Tao [1 ]
Pichler, Hannes [3 ,4 ]
机构
[1] QuEra Comp Inc, 1284 Soldiers Field Rd, Boston, MA 02135 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.1103/PRXQuantum.4.010316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead in the number of qubits. We analyze several examples, including maximum-weighted independent set on graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the orig-inal problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the hardware geometry.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
    Yue Wu
    Shimon Kolkowitz
    Shruti Puri
    Jeff D. Thompson
    Nature Communications, 13
  • [22] Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
    Wu, Yue
    Kolkowitz, Shimon
    Puri, Shruti
    Thompson, Jeff D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Uncovering Emergent Spacetime Supersymmetry with Rydberg Atom Arrays
    Li, Chengshu
    Liu, Shang
    Wang, Hanteng
    Zhang, Wenjun
    Li, Zi-Xiang
    Zhai, Hui
    Gu, Yingfei
    PHYSICAL REVIEW LETTERS, 2024, 133 (22)
  • [24] Detecting prethermal Floquet phases of Rydberg atom arrays
    Ghosh S.
    Sen D.
    Sengupta K.
    Physical Review B, 2023, 108 (09)
  • [25] Enhanced atom-by-atom assembly of arbitrary tweezer arrays
    Schymik, Kai-Niklas
    Lienhard, Vincent
    Barredo, Daniel
    Scholl, Pascal
    Williams, Hannah
    Browaeys, Antoine
    Lahaye, Thierry
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [26] Coherent states in a Rydberg atom: Quantum mechanics
    Cerjan, C
    Lee, E
    Farrelly, D
    Uzer, T
    PHYSICAL REVIEW A, 1997, 55 (03): : 2222 - 2231
  • [27] Coherent states in a Rydberg atom: quantum mechanics
    Cerjan, Charles
    Lee, Ernestine
    Farrelly, David
    Uzer, T.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 55 (03):
  • [28] Quantum versus classical chirps in a Rydberg atom
    Armon, Tsafrir
    Friedland, Lazar
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [30] Photon-photon interactions in Rydberg-atom arrays
    Zhang, Lida
    Walther, Valentin
    Molmer, Klaus
    Pohl, Thomas
    QUANTUM, 2022, 6