2-local Lie triple isomorphisms of nest algebras

被引:4
|
作者
Zhao, Xingpeng [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
关键词
2-local Lie triple isomorphism; Lie triple isomorphism; Nest algebra; CENTRALIZING TRACES; COMMUTING TRACES; DERIVATIONS; MAPS;
D O I
10.1080/00927872.2023.2187637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a nontrivial nest on a complex separable Hilbert space H with dimH > 2, and AlgN be the associated nest algebra. Suppose that d : AlgN ? AlgN is an additive surjective 2-local Lie triple isomorphism. If AlgN is not of infinite multiplicity, we prove that d is of the form d(x) = f(x) + t (x) for any x ? AlgN, where f is an isomorphism or the negative of an anti-isomorphism and t : AlgN ? CI is a linear map with t([[x, y], z]) = 0 for all x,y, z ? AlgN.
引用
收藏
页码:3756 / 3763
页数:8
相关论文
共 50 条