2-local Lie *-automorphisms on factors

被引:4
|
作者
Liu, Lei [1 ,2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 11期
基金
中国国家自然科学基金;
关键词
Automorphism; 2-local Lie *-automorphism; factor; LOCAL AUTOMORPHISMS; DERIVATIONS; ALGEBRAS; ISOMORPHISMS; HOMOMORPHISMS; THEOREM;
D O I
10.1080/03081087.2017.1389852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a factor which is not of type I-2. We prove that every surjective 2- local Lie *- automorphism Phi of A can be written in the form Phi = phi + h, where Phi : A -> A is an *- automorphism or the negative of an anti-*- automorphism, and h is a *- linear functional vanishing on all finite sums of commutators.
引用
收藏
页码:2208 / 2214
页数:7
相关论文
共 50 条
  • [1] 2-LOCAL *-LIE AUTOMORPHISMS OF SEMI-FINITE FACTORS
    Fang, Xiaochun
    Zhao, Xingpeng
    Yang, Bing
    OPERATORS AND MATRICES, 2019, 13 (03): : 745 - 759
  • [2] 2-Local Automorphisms on Basic Classical Lie Superalgebras
    Li YU
    Ying WANG
    Hai Xian CHEN
    Ji Zhu NAN
    Acta Mathematica Sinica,English Series, 2019, (03) : 427 - 437
  • [3] 2-Local Automorphisms on Basic Classical Lie Superalgebras
    Li Yu
    Ying Wang
    Hai Xian Chen
    Ji Zhu Nan
    Acta Mathematica Sinica, English Series, 2019, 35 : 427 - 437
  • [4] 2-Local Automorphisms on Basic Classical Lie Superalgebras
    Yu, Li
    Wang, Ying
    Chen, Hai Xian
    Nan, Ji Zhu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 427 - 437
  • [5] 2-Local Automorphisms on Basic Classical Lie Superalgebras
    Li YU
    Ying WANG
    Hai Xian CHEN
    Ji Zhu NAN
    ActaMathematicaSinica, 2019, 35 (03) : 427 - 437
  • [6] Local and Linear 2-local Automorphisms of Heisenberg Lie (Super)algebras
    Sheng, Yuqiu
    Liu, Wende
    Miao, Xingxue
    FRONTIERS OF MATHEMATICS, 2025, 20 (02): : 335 - 346
  • [7] The Characterization of 2-Local Lie Automorphisms of Some Operator Algebras
    Xiaochun Fang
    Xingpeng Zhao
    Bing Yang
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1959 - 1974
  • [8] The characterization of 2-local Lie automorphisms of some operator algebras
    Xiaochun Fang
    Xingpeng Zhao
    Bing Yang
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 961 - 970
  • [9] 2-Local automorphisms on finite-dimensional Lie algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 507 : 121 - 131
  • [10] The characterization of 2-local Lie automorphisms of some operator algebras
    Fang, Xiaochun
    Zhao, Xingpeng
    Yang, Bing
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 961 - 970