2-local Lie *-automorphisms on factors

被引:4
|
作者
Liu, Lei [1 ,2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 11期
基金
中国国家自然科学基金;
关键词
Automorphism; 2-local Lie *-automorphism; factor; LOCAL AUTOMORPHISMS; DERIVATIONS; ALGEBRAS; ISOMORPHISMS; HOMOMORPHISMS; THEOREM;
D O I
10.1080/03081087.2017.1389852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a factor which is not of type I-2. We prove that every surjective 2- local Lie *- automorphism Phi of A can be written in the form Phi = phi + h, where Phi : A -> A is an *- automorphism or the negative of an anti-*- automorphism, and h is a *- linear functional vanishing on all finite sums of commutators.
引用
收藏
页码:2208 / 2214
页数:7
相关论文
共 50 条
  • [21] 2-local automorphisms on semisimple L*-algebras
    Ben Yahya, Abdelaziz
    Ben Haddou, Malika Ait
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [22] 2-local Jordan automorphisms on operator algebras
    Fosner, Ajda
    STUDIA MATHEMATICA, 2012, 209 (03) : 235 - 246
  • [23] Local and 2-local automorphisms of simple generalized Witt algebras
    Chen, Yang
    Zhao, Kaiming
    Zhao, Yueqiang
    ARKIV FOR MATEMATIK, 2021, 59 (01): : 1 - 10
  • [24] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Shavkat Ayupov
    Karimbergen Kudaybergenov
    Bakhrom Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2199 - 2234
  • [25] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2199 - 2234
  • [26] Local and 2-local automorphisms of some solvable Leibniz algebras
    Arzikulov, F. N.
    Karimjanov, I. A.
    Umrzaqov, S. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [27] 2-LOCAL LIE ISOMORPHISMS OF NEST ALGEBRAS
    Li, Changjing
    Lu, Fangyan
    OPERATORS AND MATRICES, 2016, 10 (02): : 425 - 434
  • [28] 2-Local -Lie isomorphisms of operator algebras
    Li, Changjing
    Lu, Fangyan
    AEQUATIONES MATHEMATICAE, 2016, 90 (05) : 905 - 916
  • [29] Local derivations and 2-local Lie derivations of triangular algebras
    Liu, Dan
    Niu, Xiaolei
    SCIENCEASIA, 2024, 50 (02):
  • [30] Local and 2-Local Derivations of Locally Simple Lie Algebras
    Ayupov S.
    Kudaybergenov K.
    Yusupov B.
    Journal of Mathematical Sciences, 2024, 278 (4) : 613 - 622