Shutdown dose rate analysis with the Shift Monte Carlo radiation transport code and modular verification workflow

被引:1
|
作者
Bae, Jin Whan [1 ]
Kos, Bor [1 ]
Biondo, Elliott [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
关键词
R2S; SDDR; Shutdown dose rate analysis; MCNP; ITER; Shift; ORIGEN; VARIANCE REDUCTION; NEUTRON-TRANSPORT; CADIS METHOD; CAPABILITIES; VALIDATION; DEPLETION;
D O I
10.1016/j.fusengdes.2023.113895
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Calculation of the shutdown dose rate is crucial for safe fusion reactor operations. The Rigorous-two-step (R2S) method is a method that requires connected neutron transport, activation, and gamma transport. Shift has integrated variance reduction with a deterministic solver Denovo, supports multiple geometry formats, and is scalable. These features make it an attractive transport solver choice for an R2S workflow. An R2S workflow for the Shift Monte Carlo code is developed and compared to the existing Oak Ridge National Laboratory Shutdown Dose Rate Code Suite (ORCS) workflow. Also, a Python framework for integrating two R2S workflows is developed to mix and match each step in the R2S workflow for improved collaboration and verification experience. Results show that the Shift-Denovo R2S workflow and the ORCS workflow calculate the shutdown dose rate of the ITER Shutdown Dose Rate benchmark problem with an average relative error of 2.285%.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code
    Hamilton, Steven P.
    Evans, Thomas M.
    ANNALS OF NUCLEAR ENERGY, 2019, 128 : 236 - 247
  • [22] FLUKAVAL - A validation framework for the FLUKA radiation transport Monte Carlo code
    Widorski, Markus
    Bozzato, Davide
    Froeschl, Robert
    Kouskoura, Vasiliki
    15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022, 2023, 284
  • [23] Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code
    Suwoto
    Adrial, H.
    Hamzah, A.
    Zuhair
    Bakhri, S.
    Sunaryo, G. R.
    INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS 2017), 2018, 962
  • [24] Development and preliminary verification of a Monte Carlo photon transport code IMPC-Photon
    Gao, Qingyu
    Fang, Peng
    Zhao, Zelong
    Yang, Yongwei
    Wu, Xiang
    ANNALS OF NUCLEAR ENERGY, 2021, 159
  • [26] Development and preliminary verification of a Monte Carlo neutron transport code IMPC-Neutron
    Fang, Peng
    Wu, Xiang
    Yang, Yongwei
    Wang, Huiqiao
    Yang, Lei
    Guo, Yuyao
    Lai, Hanghui
    ANNALS OF NUCLEAR ENERGY, 2022, 175
  • [27] Monte Carlo code comparison of dose delivery prediction for Microbeam Radiation Therapy
    de Felici, M.
    Siegbahn, E. A.
    Spiga, J.
    Hanson, A. L.
    Felici, R.
    Ferrero, C.
    Tartari, A.
    Gambaccini, M.
    Keyrilaeinen, J.
    Braeuer-Krisch, E.
    Randaccio, P.
    Bravin, A.
    INTERNATIONAL WORKSHOP ON MONTE CARLO TECHNIQUES IN RADIOTHERAPY DELIVERY AND VERIFICATION - THIRD MCGILL INTERNATIONAL WORKSHOP, 2008, 102
  • [28] Pitfalls in electron dose assessment by Monte Carlo radiation transport codes
    Siqueira, P.
    Rodrigues, L.
    Yoriyaz, H.
    Zevallos-Chavez, J.
    Poli, M.
    Furnari, L.
    Rubo, R.
    MEDICAL PHYSICS, 2007, 34 (06) : 2482 - 2482
  • [29] Fluids in a Hybrid System by Using MCNPX Monte Carlo Radiation Transport Code
    Gunay, M.
    ACTA PHYSICA POLONICA A, 2015, 128 (2B) : B113 - B117
  • [30] An object-oriented implementation of a parallel Monte Carlo code for radiation transport
    Santos, Pedro Duarte
    Lani, Andrea
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 : 233 - 261