On Completely Mixed Games

被引:0
|
作者
Thiruvankatachari, Parthasarathy [1 ]
Gomatam, Ravindran [2 ]
Kumar, Sunil [2 ]
机构
[1] Chennai Math Inst, Chennai 603103, India
[2] Indian Stat Inst, Chennai 600029, India
关键词
Q matrices; Completely mixed games; Symmetric games; Skew-symmetric matrices;
D O I
10.1007/s10957-024-02395-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A matrix game is considered completely mixed if all the optimal pairs of strategies in the game are completely mixed. In this paper, we establish that a matrix game A, with a value of zero, is completely mixed if and only if the value of the game associated with A+Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A +D_i $$\end{document} is positive for all i, where Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_i$$\end{document} represents a diagonal matrix where ith diagonal entry is 1 and else 0. Additionally, we address Kaplansky's question from 1945 regarding whether an odd-ordered symmetric game can be completely mixed, and provide characterizations for odd-ordered skew-symmetric matrices to be completely mixed. Moreover, we demonstrate that if A is an almost skew-symmetric matrix and the game associated with A has value positive, then A+Di is an element of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A +D_i \in Q$$\end{document} for all i, where Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_i$$\end{document} is a diagonal matrix whose ith diagonal entry is 1 and else 0. Skew-symmetric matrices and almost skew-symmetric matrices with value positive fall under the class of P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_0$$\end{document} and Q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_0$$\end{document}, making them amenable to processing through Lemke's algorithm.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条