Congestion games with mixed objectives

被引:0
|
作者
Matthias Feldotto
Lennart Leder
Alexander Skopalik
机构
[1] Paderborn University,
来源
关键词
Congestion games; Bottleneck congestion games; Pure Nash equilibrium; Existence; Convergence; Complexity; Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We study a new class of games which generalizes congestion games and its bottleneck variant. We introduce congestion games with mixed objectives to model network scenarios in which players seek to optimize for latency and bandwidths alike. We characterize the (non-)existence of pure Nash equilibria (PNE), the convergence of improvement dynamics, the quality of equilibria and show the complexity of the decision problem. For games that do not possess PNE we give bounds on the approximation ratio of approximate pure Nash equilibria.
引用
收藏
页码:1145 / 1167
页数:22
相关论文
共 50 条
  • [1] Congestion games with mixed objectives
    Feldotto, Matthias
    Leder, Lennart
    Skopalik, Alexander
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (04) : 1145 - 1167
  • [2] Uniform Mixed Equilibria in Network Congestion Games with Link Failures
    Bilo, Vittorio
    Moscardelli, Luca
    Vinci, Cosimo
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (01) : 509 - 535
  • [3] On satisfiability games and the power of congestion games
    Bilo, Vittorio
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2007, 4508 : 231 - 240
  • [4] Graphical Congestion Games
    Bilo, Vittorio
    Fanelli, Angelo
    Flammini, Michele
    Moscardelli, Luca
    ALGORITHMICA, 2011, 61 (02) : 274 - 297
  • [5] Congestion games revisited
    Nikolai S. Kukushkin
    International Journal of Game Theory, 2007, 36 : 57 - 83
  • [6] Graphical Congestion Games
    Bilo, Vittorio
    Fanelli, Angelo
    Flammini, Michele
    Moscardelli, Luca
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2008, 5385 : 70 - +
  • [7] Dynamics in Congestion Games
    Shah, Devavrat
    Shin, Jinwoo
    SIGMETRICS 2010: PROCEEDINGS OF THE 2010 ACM SIGMETRICS INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SYSTEMS, 2010, 38 (01): : 107 - 118
  • [8] Chaotic congestion games
    Naimzada, Ahmad Kabir
    Raimondo, Roberto
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 333 - 348
  • [9] Congestion games revisited
    Kukushkin, Nikolai S.
    INTERNATIONAL JOURNAL OF GAME THEORY, 2007, 36 (01) : 57 - 83
  • [10] On Multidimensional Congestion Games
    Bilo, Vittorio
    Flammini, Michele
    Gallotti, Vasco
    Vinci, Cosimo
    ALGORITHMS, 2020, 13 (10)