A Least Squares Fitting Method for Uncertain Parameter Estimation in Solidification Model

被引:1
|
作者
Wang, Yuhan [1 ]
Xie, Zhi [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
equiaxed crystal ratio; solidification model; fitted parameters; parameter estimation model; least squares; NUMERICAL-SIMULATION; DENDRITIC GROWTH; STAINLESS-STEEL; ALLOY; TRANSITION; COLUMNAR;
D O I
10.3390/cryst13121673
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on the relationship between the simulated images equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters of the model by the least squares method, and finally estimates the uncertain parameters in the solidification model using the parameters of the fitted model. In comparison with the traditional method of calculating uncertain parameters manually through empirical formulas, this method reduces the difficulty of tuning parameters and solves the problem of tuning multiple parameters simultaneously in the nonlinear solidification model. The experimental results show that the proposed method can accurately estimate the uncertain parameters of the solidification model, improve the efficiency and accuracy of the solidification model estimation parameters, and play a guiding role in simulating the solidification process of continuously casting billet to control the solidification structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Least squares fitting of coordinate parameters model
    YU Sheng-wen~(1)
    2. Bao’an Coal Mine of Huaning Group
    3. The Plan Bureau of Laiwu
    TransactionsofNonferrousMetalsSocietyofChina, 2005, (S1) : 197 - 199
  • [32] Least squares fitting of coordinate parameters model
    Yu, SW
    Dong, J
    Wang, AM
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 189 - 191
  • [33] Dynamic least squares parameter estimation of structures
    Yap, KC
    Zimmerman, DC
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 1513 - 1519
  • [34] Constrained logarithmic least squares in parameter estimation
    Bai, EW
    Ye, YY
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) : 182 - 186
  • [35] Noisy FIR parameter estimation by combining of total least mean squares estimation and least mean squares estimation
    Lim, Jun-Seok
    IEICE ELECTRONICS EXPRESS, 2009, 6 (09): : 572 - 578
  • [36] LEAST-SQUARES PARAMETER-ESTIMATION
    STREJC, V
    AUTOMATICA, 1980, 16 (05) : 535 - 550
  • [37] Least squares estimation of uncertain partial differential equations
    Yang, Lu
    Liu, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3482 - 3495
  • [38] Parameter estimation for HFM signals using combined STFT and iteratively reweighted least squares linear fitting
    Yao, Shuai
    Fang, Shiliang
    Wang, Xiaoyan
    Wang, Li
    SIGNAL PROCESSING, 2014, 99 : 92 - 102
  • [39] Generalized phase-shifting interferometry by parameter estimation with the least squares method
    Juarez-Salazar, Rigoberto
    Robledo-Sanchez, Carlos
    Meneses-Fabian, Cruz
    Guerrero-Sanchez, Fermin
    Arevalo Aguilar, L. M.
    OPTICS AND LASERS IN ENGINEERING, 2013, 51 (05) : 626 - 632
  • [40] Photovoltaic module parameter estimation using an analytical approach and least squares method
    Noureddine Maouhoub
    Journal of Computational Electronics, 2018, 17 : 784 - 790